Парадокс Эренфеста




Парадокс Эренфеста — мысленный эксперимент, рассматривающий диск, вращающийся с околосветовой скоростью.


В современном понимании показывает несовместимость некоторых понятий классической механики со специальной теорией относительности, а также возможность различного определения понятий времени и расстояния во вращающихся системах отсчёта.


Данный парадокс был выдвинут Эренфестом в 1909 году после разработки Эйнштейном специальной теории относительности.




Содержание






  • 1 Суть парадокса


  • 2 Теоретический анализ


    • 2.1 Вращение в теории относительности


    • 2.2 Геометрия вращающегося диска


    • 2.3 Парадокс Эренфеста и ОТО




  • 3 Физическое толкование


  • 4 См. также


  • 5 Примечания





Суть парадокса |


Рассмотрим окружность (или полый цилиндр), вращающуюся вокруг своей оси.
Так как скорость каждого элемента окружности направлена по касательной, то она (окружность) должна испытывать лоренцево сокращение, то есть её размер для внешнего наблюдателя должен казаться меньше, чем её собственная длина.


Если окружность имеет радиус R{displaystyle R}R, то для внешнего наблюдателя её длина равна R{displaystyle 2pi R}2pi R.


Однако, учитывая лоренцево сокращение, собственная длина окружности окажется больше:


l=2πR1−(v/c)2=2πR1−Rc)2,{displaystyle l={frac {2pi R}{sqrt {1-(v/c)^{2}}}}={frac {2pi R}{sqrt {1-left(displaystyle {frac {omega R}{c}}right)^{2}}}},}l={frac  {2pi R}{{sqrt  {1-(v/c)^{2}}}}}={frac  {2pi R}{{sqrt  {1-left(displaystyle {frac  {omega R}{c}}right)^{2}}}}},

где ω{displaystyle omega }omega — круговая частота, c{displaystyle c}c — скорость света.


Таким образом, изначально неподвижная жёсткая окружность после её раскручивания должна парадоксальным образом уменьшать свой радиус, чтобы сохранить длину.


По рассуждениям Эренфеста абсолютно твёрдое тело невозможно привести во вращательное движение[1], поскольку в радиальном направлении лоренцева сжатия быть не должно.
Следовательно диск, бывший в покоящемся состоянии плоским, при раскручивании должен как-то изменить свою форму.




Длины светлых окружностей образуют арифметическую прогрессию, однако их радиусы растут, при увеличении линейной скорости, всё медленнее. Зелёные риски отмечают радиусы, получаемые делением длин на {displaystyle 2pi }2pi .



Теоретический анализ |



Вращение в теории относительности |




Пространственно-временная геометрия околосветового вращения




Замедление времени у края диска


Рассуждение Эренфеста показывает невозможность приведения абсолютно твёрдого тела (изначально покоившегося) во вращение.


Оно, тем не менее, не опровергает существования жёстких равномерно вращающихся дисков.
Однако их пространственная геометрия должна быть отлична от евклидовой.


Пространственно-временно́е описание такого диска возможно при помощи координат Борна, однако течение времени на нём будет отличаться от галилеева.


Скорость времени будет зависеть от расстояния до центра, а скорости света вперёд и назад по направлению вращения в координатах Борна окажутся различны (см. также эффект Саньяка).
Построить ортогональную пространственно-временную систему координат, привязанную ко вращающемуся диску, оказывается невозможно.


Тем не менее, оказывается возможным корректно определить расстояние на вращающемся диске в смысле римановой метрики.



Геометрия вращающегося диска |


Пользуясь координатами Борна, мы можем определить собственное расстояние между очень близкими[2] точками диска.
Их можно представлять, например, соседними молекулами или атомами в металле, из которого сделан диск.


Локально расстояние оказывается устроено именно так, как полагал Эренфест: вдоль окружностей собственное расстояние превышает видимое в точности по закону лоренцева сокращения, а в направлении радиусов оказывается неизменным, то есть равным разности радиусов.


Вычисления показывают, что вращающийся диск, хотя предполагается лежащим в плоскости, должен (в смысле своей, собственной геометрии) являться поверхностью с отрицательной кривизной.


Если считать рассматриваемое вращающееся тело имеющим толщину, то вдоль неё (то есть в направлении вдоль оси вращения), как и в радиальных направлениях, разницы между естественными и видимыми расстояниями не наблюдается.
В координатах ,r,z){displaystyle (varphi ,;r,;z)}(varphi ,;r,;z), таким образом, метрика всех трёх размерностей пространства будет выглядеть как:


c2r2c2−ω2r2dφ2+dr2+dz2.{displaystyle {frac {c^{2},r^{2}}{c^{2}-omega ^{2},r^{2}}},dvarphi ^{2}+dr^{2}+dz^{2}.}{frac  {c^{2},r^{2}}{c^{2}-omega ^{2},r^{2}}},dvarphi ^{2}+dr^{2}+dz^{2}.


Парадокс Эренфеста и ОТО |


Разрешение «парадокса» в современной форме вовлекает такой математический аппарат как криволинейные координаты и геодезические, характерный для общей теории относительности. Тем не менее, хотя понятия ОТО вполне применимы к данному случаю, следует иметь в виду что парадокс Эренфеста рассматривается в плоском, неискривлённом пространстве Минковского.
Вращение диска в гравитационном поле будет представлять уже иную задачу.



Физическое толкование |


Околосветовое вращение твёрдого тела едва ли может наблюдаться на практике, поскольку центробежная сила должна приводить (для диска, не удерживаемого никакими силами, кроме собственной прочности) к напряжениям порядка плотности материала умноженной на c2{displaystyle c^{2}}c^{2}, которые не сможет выдержать никакое вещество или материал.


Если же компенсировать центробежную силу гравитационным полем (как происходит, например, в пульсарах), то мы выйдем за рамки применимости СТО, и геометрия тела, по-видимому, изменится иным образом, нежели описано выше.


При достижении же раскручиваемым диском умеренной скорости вращения его форма меняется гораздо сильнее от упругих деформаций, нежели из-за эффектов СТО. Релятивистский эффект Эренфеста лишь должен незначительно усилить продольное (вдоль направления вращения) растяжение материала диска.



См. также |



  • Аккреционный диск

  • ГЗК-парадокс

  • Парадокс Белла

  • Парадокс близнецов

  • Парадоксы квантовой механики

  • Относительность одновременности

  • Парадокс субмарины

  • Парадокс шеста и сарая



Примечания |





  1. Физика ч.2. Энциклопедия для детей. Том 16. стр.123 [ISBN 5-8483-0030-5]


  2. Строго говоря, относительная скорость этих двух точек должна быть много меньше световой, в пределах применимости классической механики.








Popular posts from this blog

Сан-Квентин

8-я гвардейская общевойсковая армия

Алькесар