Why doesn't the GCM spec use a more efficient multiplication algorithm?












5












$begingroup$


NIST SP 800-38D § 6.3 Multiplication Operation on Blocks describes a multiplication algorithm that, in my testing, appears to be a good amount slower then algorithm 2.40 (arbitrary reduction polynomials) in the Guide to Elliptic Curve Cryptography.



My question is...why? Does the algorithm described in NIST SP 800-38D provide better protection against timing attacks?










share|improve this question











$endgroup$

















    5












    $begingroup$


    NIST SP 800-38D § 6.3 Multiplication Operation on Blocks describes a multiplication algorithm that, in my testing, appears to be a good amount slower then algorithm 2.40 (arbitrary reduction polynomials) in the Guide to Elliptic Curve Cryptography.



    My question is...why? Does the algorithm described in NIST SP 800-38D provide better protection against timing attacks?










    share|improve this question











    $endgroup$















      5












      5








      5





      $begingroup$


      NIST SP 800-38D § 6.3 Multiplication Operation on Blocks describes a multiplication algorithm that, in my testing, appears to be a good amount slower then algorithm 2.40 (arbitrary reduction polynomials) in the Guide to Elliptic Curve Cryptography.



      My question is...why? Does the algorithm described in NIST SP 800-38D provide better protection against timing attacks?










      share|improve this question











      $endgroup$




      NIST SP 800-38D § 6.3 Multiplication Operation on Blocks describes a multiplication algorithm that, in my testing, appears to be a good amount slower then algorithm 2.40 (arbitrary reduction polynomials) in the Guide to Elliptic Curve Cryptography.



      My question is...why? Does the algorithm described in NIST SP 800-38D provide better protection against timing attacks?







      encryption aes finite-field gcm ghash






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Dec 19 '18 at 18:27







      neubert

















      asked Dec 19 '18 at 4:25









      neubertneubert

      1,3151529




      1,3151529






















          1 Answer
          1






          active

          oldest

          votes


















          10












          $begingroup$


          My question is... why?




          There are a number of different algorithms that perform $GF(2^{128})$ multiplication, all with different trade-offs (speed on specific platforms, program size, memory usage, complexity, side channel resistance, etc). NIST doesn't care which one you use, as long as you get the expected result at the end.



          As for why NIST decided to put that specific algorithm as an example in the spec, well, I didn't write the spec, so I can't be certain. My guess is that they decided on the goals of simplicity and clarity, and that algorithm was the best they could find that would meet those goals (whether it is actually simpler or clearer than algorithm 2.40 is, of course, debatable...)






          share|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "281"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcrypto.stackexchange.com%2fquestions%2f65979%2fwhy-doesnt-the-gcm-spec-use-a-more-efficient-multiplication-algorithm%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            10












            $begingroup$


            My question is... why?




            There are a number of different algorithms that perform $GF(2^{128})$ multiplication, all with different trade-offs (speed on specific platforms, program size, memory usage, complexity, side channel resistance, etc). NIST doesn't care which one you use, as long as you get the expected result at the end.



            As for why NIST decided to put that specific algorithm as an example in the spec, well, I didn't write the spec, so I can't be certain. My guess is that they decided on the goals of simplicity and clarity, and that algorithm was the best they could find that would meet those goals (whether it is actually simpler or clearer than algorithm 2.40 is, of course, debatable...)






            share|improve this answer









            $endgroup$


















              10












              $begingroup$


              My question is... why?




              There are a number of different algorithms that perform $GF(2^{128})$ multiplication, all with different trade-offs (speed on specific platforms, program size, memory usage, complexity, side channel resistance, etc). NIST doesn't care which one you use, as long as you get the expected result at the end.



              As for why NIST decided to put that specific algorithm as an example in the spec, well, I didn't write the spec, so I can't be certain. My guess is that they decided on the goals of simplicity and clarity, and that algorithm was the best they could find that would meet those goals (whether it is actually simpler or clearer than algorithm 2.40 is, of course, debatable...)






              share|improve this answer









              $endgroup$
















                10












                10








                10





                $begingroup$


                My question is... why?




                There are a number of different algorithms that perform $GF(2^{128})$ multiplication, all with different trade-offs (speed on specific platforms, program size, memory usage, complexity, side channel resistance, etc). NIST doesn't care which one you use, as long as you get the expected result at the end.



                As for why NIST decided to put that specific algorithm as an example in the spec, well, I didn't write the spec, so I can't be certain. My guess is that they decided on the goals of simplicity and clarity, and that algorithm was the best they could find that would meet those goals (whether it is actually simpler or clearer than algorithm 2.40 is, of course, debatable...)






                share|improve this answer









                $endgroup$




                My question is... why?




                There are a number of different algorithms that perform $GF(2^{128})$ multiplication, all with different trade-offs (speed on specific platforms, program size, memory usage, complexity, side channel resistance, etc). NIST doesn't care which one you use, as long as you get the expected result at the end.



                As for why NIST decided to put that specific algorithm as an example in the spec, well, I didn't write the spec, so I can't be certain. My guess is that they decided on the goals of simplicity and clarity, and that algorithm was the best they could find that would meet those goals (whether it is actually simpler or clearer than algorithm 2.40 is, of course, debatable...)







                share|improve this answer












                share|improve this answer



                share|improve this answer










                answered Dec 19 '18 at 4:59









                ponchoponcho

                91k2142236




                91k2142236






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Cryptography Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcrypto.stackexchange.com%2fquestions%2f65979%2fwhy-doesnt-the-gcm-spec-use-a-more-efficient-multiplication-algorithm%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Сан-Квентин

                    Алькесар

                    Josef Freinademetz