Performant cartesian product (CROSS JOIN) with pandas
The contents of this post were originally meant to be a part of
Pandas Merging 101,
but due to the nature and size of the content required to fully do
justice to this topic, it has been moved to its own QnA.
Given two simple DataFrames;
left = pd.DataFrame({'col1' : ['A', 'B', 'C'], 'col2' : [1, 2, 3]})
right = pd.DataFrame({'col1' : ['X', 'Y', 'Z'], 'col2' : [20, 30, 50]})
left
col1 col2
0 A 1
1 B 2
2 C 3
right
col1 col2
0 X 20
1 Y 30
2 Z 50
The cross product of these frames can be computed, and will look something like:
A 1 X 20
A 1 Y 30
A 1 Z 50
B 2 X 20
B 2 Y 30
B 2 Z 50
C 3 X 20
C 3 Y 30
C 3 Z 50
What is the most performant method of computing this result?
python pandas numpy dataframe merge
add a comment |
The contents of this post were originally meant to be a part of
Pandas Merging 101,
but due to the nature and size of the content required to fully do
justice to this topic, it has been moved to its own QnA.
Given two simple DataFrames;
left = pd.DataFrame({'col1' : ['A', 'B', 'C'], 'col2' : [1, 2, 3]})
right = pd.DataFrame({'col1' : ['X', 'Y', 'Z'], 'col2' : [20, 30, 50]})
left
col1 col2
0 A 1
1 B 2
2 C 3
right
col1 col2
0 X 20
1 Y 30
2 Z 50
The cross product of these frames can be computed, and will look something like:
A 1 X 20
A 1 Y 30
A 1 Z 50
B 2 X 20
B 2 Y 30
B 2 Z 50
C 3 X 20
C 3 Y 30
C 3 Z 50
What is the most performant method of computing this result?
python pandas numpy dataframe merge
1
Would you like share your input in Github as well , I think addingcross join
in pandas is really good to match all the join function in SQL . github.com/pandas-dev/pandas/issues/5401
– W-B
Dec 11 '18 at 20:58
1
@W-B Thanks! That thread seems interesting, let me see if there's something I can contribute to it.
– coldspeed
Dec 12 '18 at 2:53
add a comment |
The contents of this post were originally meant to be a part of
Pandas Merging 101,
but due to the nature and size of the content required to fully do
justice to this topic, it has been moved to its own QnA.
Given two simple DataFrames;
left = pd.DataFrame({'col1' : ['A', 'B', 'C'], 'col2' : [1, 2, 3]})
right = pd.DataFrame({'col1' : ['X', 'Y', 'Z'], 'col2' : [20, 30, 50]})
left
col1 col2
0 A 1
1 B 2
2 C 3
right
col1 col2
0 X 20
1 Y 30
2 Z 50
The cross product of these frames can be computed, and will look something like:
A 1 X 20
A 1 Y 30
A 1 Z 50
B 2 X 20
B 2 Y 30
B 2 Z 50
C 3 X 20
C 3 Y 30
C 3 Z 50
What is the most performant method of computing this result?
python pandas numpy dataframe merge
The contents of this post were originally meant to be a part of
Pandas Merging 101,
but due to the nature and size of the content required to fully do
justice to this topic, it has been moved to its own QnA.
Given two simple DataFrames;
left = pd.DataFrame({'col1' : ['A', 'B', 'C'], 'col2' : [1, 2, 3]})
right = pd.DataFrame({'col1' : ['X', 'Y', 'Z'], 'col2' : [20, 30, 50]})
left
col1 col2
0 A 1
1 B 2
2 C 3
right
col1 col2
0 X 20
1 Y 30
2 Z 50
The cross product of these frames can be computed, and will look something like:
A 1 X 20
A 1 Y 30
A 1 Z 50
B 2 X 20
B 2 Y 30
B 2 Z 50
C 3 X 20
C 3 Y 30
C 3 Z 50
What is the most performant method of computing this result?
python pandas numpy dataframe merge
python pandas numpy dataframe merge
edited Dec 10 '18 at 9:04
asked Dec 10 '18 at 3:12
coldspeed
121k21121203
121k21121203
1
Would you like share your input in Github as well , I think addingcross join
in pandas is really good to match all the join function in SQL . github.com/pandas-dev/pandas/issues/5401
– W-B
Dec 11 '18 at 20:58
1
@W-B Thanks! That thread seems interesting, let me see if there's something I can contribute to it.
– coldspeed
Dec 12 '18 at 2:53
add a comment |
1
Would you like share your input in Github as well , I think addingcross join
in pandas is really good to match all the join function in SQL . github.com/pandas-dev/pandas/issues/5401
– W-B
Dec 11 '18 at 20:58
1
@W-B Thanks! That thread seems interesting, let me see if there's something I can contribute to it.
– coldspeed
Dec 12 '18 at 2:53
1
1
Would you like share your input in Github as well , I think adding
cross join
in pandas is really good to match all the join function in SQL . github.com/pandas-dev/pandas/issues/5401– W-B
Dec 11 '18 at 20:58
Would you like share your input in Github as well , I think adding
cross join
in pandas is really good to match all the join function in SQL . github.com/pandas-dev/pandas/issues/5401– W-B
Dec 11 '18 at 20:58
1
1
@W-B Thanks! That thread seems interesting, let me see if there's something I can contribute to it.
– coldspeed
Dec 12 '18 at 2:53
@W-B Thanks! That thread seems interesting, let me see if there's something I can contribute to it.
– coldspeed
Dec 12 '18 at 2:53
add a comment |
3 Answers
3
active
oldest
votes
Let's start by establishing a benchmark. The easiest method for solving this is using a temporary "key" column:
def cartesian_product_basic(left, right):
return (
left.assign(key=1).merge(right.assign(key=1), on='key').drop('key', 1))
cartesian_product_basic(left, right)
col1_x col2_x col1_y col2_y
0 A 1 X 20
1 A 1 Y 30
2 A 1 Z 50
3 B 2 X 20
4 B 2 Y 30
5 B 2 Z 50
6 C 3 X 20
7 C 3 Y 30
8 C 3 Z 50
How this works is that both DataFrames are assigned a temporary "key" column with the same value (say, 1). merge
then performs a many-to-many JOIN on "key".
While the many-to-many JOIN trick works for reasonably sized DataFrames, you will see relatively lower performance on larger data.
A faster implementation will require NumPy. Here are some famous NumPy implementations of 1D cartesian product. We can build on some of these performant solutions to get our desired output. My favourite, however, is @senderle's first implementation.
def cartesian_product(*arrays):
la = len(arrays)
dtype = np.result_type(*arrays)
arr = np.empty([len(a) for a in arrays] + [la], dtype=dtype)
for i, a in enumerate(np.ix_(*arrays)):
arr[...,i] = a
return arr.reshape(-1, la)
Generalizing: CROSS JOIN on Unique or Non-Unique Indexed DataFrames
Disclaimer
These solutions are optimised for DataFrames with non-mixed scalar dtypes. If dealing with mixed dtypes, use at your
own risk!
This trick will work on any kind of DataFrame. We compute the cartesian product of the DataFrames' numeric indices using the aforementioned cartesian_product
, use this to reindex the DataFrames, and
def cartesian_product_generalized(left, right):
la, lb = len(left), len(right)
idx = cartesian_product(np.ogrid[:la], np.ogrid[:lb])
return pd.DataFrame(
np.column_stack([left.values[idx[:,0]], right.values[idx[:,1]]]))
cartesian_product_generalized(left, right)
0 1 2 3
0 A 1 X 20
1 A 1 Y 30
2 A 1 Z 50
3 B 2 X 20
4 B 2 Y 30
5 B 2 Z 50
6 C 3 X 20
7 C 3 Y 30
8 C 3 Z 50
np.array_equal(cartesian_product_generalized(left, right),
cartesian_product_basic(left, right))
True
And, along similar lines,
left2 = left.copy()
left2.index = ['s1', 's2', 's1']
right2 = right.copy()
right2.index = ['x', 'y', 'y']
left2
col1 col2
s1 A 1
s2 B 2
s1 C 3
right2
col1 col2
x X 20
y Y 30
y Z 50
np.array_equal(cartesian_product_generalized(left, right),
cartesian_product_basic(left2, right2))
True
This solution can generalise to multiple DataFrames. For example,
def cartesian_product_multi(*dfs):
idx = cartesian_product(*[np.ogrid[:len(df)] for df in dfs])
return pd.DataFrame(
np.column_stack([df.values[idx[:,i]] for i,df in enumerate(dfs)]))
cartesian_product_multi(*[left, right, left]).head()
0 1 2 3 4 5
0 A 1 X 20 A 1
1 A 1 X 20 B 2
2 A 1 X 20 C 3
3 A 1 X 20 D 4
4 A 1 Y 30 A 1
Further Simplification
A simpler solution not involving @senderle's cartesian_product
is possible when dealing with just two DataFrames. Using np.broadcast_arrays
, we can achieve almost the same level of performance.
def cartesian_product_simplified(left, right):
la, lb = len(left), len(right)
ia2, ib2 = np.broadcast_arrays(*np.ogrid[:la,:lb])
return pd.DataFrame(
np.column_stack([left.values[ia2.ravel()], right.values[ib2.ravel()]]))
np.array_equal(cartesian_product_simplified(left, right),
cartesian_product_basic(left2, right2))
True
Performance Comparison
Benchmarking these solutions on some contrived DataFrames with unique indices, we have
Do note that timings may vary based on your setup, data, and choice of cartesian_product
helper function as applicable.
Functions from Other Answers
# Wen's answer: https://stackoverflow.com/a/53699198/4909087
# I've put my own spin on this to make it as fast as possible.
def cartesian_product_itertools(left, right):
return pd.DataFrame([
[*x, *y] for x, y in itertools.product(
left.values.tolist(), right.values.tolist())])
Performance Benchmarking Code
This is the timing script. All functions called here are defined above.
from timeit import timeit
import pandas as pd
import matplotlib.pyplot as plt
res = pd.DataFrame(
index=['cartesian_product_basic', 'cartesian_product_generalized',
'cartesian_product_multi', 'cartesian_product_simplified',
'cartesian_product_itertools'],
columns=[1, 10, 50, 100, 200, 300, 400, 500, 600, 800, 1000, 2000],
dtype=float
)
for f in res.index:
for c in res.columns:
# print(f,c)
if f in {'cartesian_product_itertools'} and c > 600:
continue
left2 = pd.concat([left] * c, ignore_index=True)
right2 = pd.concat([right] * c, ignore_index=True)
stmt = '{}(left2, right2)'.format(f)
setp = 'from __main__ import left2, right2, {}'.format(f)
res.at[f, c] = timeit(stmt, setp, number=5)
ax = res.div(res.min()).T.plot(loglog=True)
ax.set_xlabel("N");
ax.set_ylabel("time (relative)");
plt.show()
add a comment |
Using itertools
product
and recreate the value in dataframe
import itertools
l=list(itertools.product(left.values.tolist(),right.values.tolist()))
pd.DataFrame(list(map(lambda x : sum(x,),l)))
0 1 2 3
0 A 1 X 20
1 A 1 Y 30
2 A 1 Z 50
3 B 2 X 20
4 B 2 Y 30
5 B 2 Z 50
6 C 3 X 20
7 C 3 Y 30
8 C 3 Z 50
add a comment |
Here's an approach with triple concat
m = pd.concat([pd.concat([left]*len(right)).sort_index().reset_index(drop=True),
pd.concat([right]*len(left)).reset_index(drop=True) ], 1)
col1 col2 col1 col2
0 A 1 X 20
1 A 1 Y 30
2 A 1 Z 50
3 B 2 X 20
4 B 2 Y 30
5 B 2 Z 50
6 C 3 X 20
7 C 3 Y 30
8 C 3 Z 50
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53699012%2fperformant-cartesian-product-cross-join-with-pandas%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
Let's start by establishing a benchmark. The easiest method for solving this is using a temporary "key" column:
def cartesian_product_basic(left, right):
return (
left.assign(key=1).merge(right.assign(key=1), on='key').drop('key', 1))
cartesian_product_basic(left, right)
col1_x col2_x col1_y col2_y
0 A 1 X 20
1 A 1 Y 30
2 A 1 Z 50
3 B 2 X 20
4 B 2 Y 30
5 B 2 Z 50
6 C 3 X 20
7 C 3 Y 30
8 C 3 Z 50
How this works is that both DataFrames are assigned a temporary "key" column with the same value (say, 1). merge
then performs a many-to-many JOIN on "key".
While the many-to-many JOIN trick works for reasonably sized DataFrames, you will see relatively lower performance on larger data.
A faster implementation will require NumPy. Here are some famous NumPy implementations of 1D cartesian product. We can build on some of these performant solutions to get our desired output. My favourite, however, is @senderle's first implementation.
def cartesian_product(*arrays):
la = len(arrays)
dtype = np.result_type(*arrays)
arr = np.empty([len(a) for a in arrays] + [la], dtype=dtype)
for i, a in enumerate(np.ix_(*arrays)):
arr[...,i] = a
return arr.reshape(-1, la)
Generalizing: CROSS JOIN on Unique or Non-Unique Indexed DataFrames
Disclaimer
These solutions are optimised for DataFrames with non-mixed scalar dtypes. If dealing with mixed dtypes, use at your
own risk!
This trick will work on any kind of DataFrame. We compute the cartesian product of the DataFrames' numeric indices using the aforementioned cartesian_product
, use this to reindex the DataFrames, and
def cartesian_product_generalized(left, right):
la, lb = len(left), len(right)
idx = cartesian_product(np.ogrid[:la], np.ogrid[:lb])
return pd.DataFrame(
np.column_stack([left.values[idx[:,0]], right.values[idx[:,1]]]))
cartesian_product_generalized(left, right)
0 1 2 3
0 A 1 X 20
1 A 1 Y 30
2 A 1 Z 50
3 B 2 X 20
4 B 2 Y 30
5 B 2 Z 50
6 C 3 X 20
7 C 3 Y 30
8 C 3 Z 50
np.array_equal(cartesian_product_generalized(left, right),
cartesian_product_basic(left, right))
True
And, along similar lines,
left2 = left.copy()
left2.index = ['s1', 's2', 's1']
right2 = right.copy()
right2.index = ['x', 'y', 'y']
left2
col1 col2
s1 A 1
s2 B 2
s1 C 3
right2
col1 col2
x X 20
y Y 30
y Z 50
np.array_equal(cartesian_product_generalized(left, right),
cartesian_product_basic(left2, right2))
True
This solution can generalise to multiple DataFrames. For example,
def cartesian_product_multi(*dfs):
idx = cartesian_product(*[np.ogrid[:len(df)] for df in dfs])
return pd.DataFrame(
np.column_stack([df.values[idx[:,i]] for i,df in enumerate(dfs)]))
cartesian_product_multi(*[left, right, left]).head()
0 1 2 3 4 5
0 A 1 X 20 A 1
1 A 1 X 20 B 2
2 A 1 X 20 C 3
3 A 1 X 20 D 4
4 A 1 Y 30 A 1
Further Simplification
A simpler solution not involving @senderle's cartesian_product
is possible when dealing with just two DataFrames. Using np.broadcast_arrays
, we can achieve almost the same level of performance.
def cartesian_product_simplified(left, right):
la, lb = len(left), len(right)
ia2, ib2 = np.broadcast_arrays(*np.ogrid[:la,:lb])
return pd.DataFrame(
np.column_stack([left.values[ia2.ravel()], right.values[ib2.ravel()]]))
np.array_equal(cartesian_product_simplified(left, right),
cartesian_product_basic(left2, right2))
True
Performance Comparison
Benchmarking these solutions on some contrived DataFrames with unique indices, we have
Do note that timings may vary based on your setup, data, and choice of cartesian_product
helper function as applicable.
Functions from Other Answers
# Wen's answer: https://stackoverflow.com/a/53699198/4909087
# I've put my own spin on this to make it as fast as possible.
def cartesian_product_itertools(left, right):
return pd.DataFrame([
[*x, *y] for x, y in itertools.product(
left.values.tolist(), right.values.tolist())])
Performance Benchmarking Code
This is the timing script. All functions called here are defined above.
from timeit import timeit
import pandas as pd
import matplotlib.pyplot as plt
res = pd.DataFrame(
index=['cartesian_product_basic', 'cartesian_product_generalized',
'cartesian_product_multi', 'cartesian_product_simplified',
'cartesian_product_itertools'],
columns=[1, 10, 50, 100, 200, 300, 400, 500, 600, 800, 1000, 2000],
dtype=float
)
for f in res.index:
for c in res.columns:
# print(f,c)
if f in {'cartesian_product_itertools'} and c > 600:
continue
left2 = pd.concat([left] * c, ignore_index=True)
right2 = pd.concat([right] * c, ignore_index=True)
stmt = '{}(left2, right2)'.format(f)
setp = 'from __main__ import left2, right2, {}'.format(f)
res.at[f, c] = timeit(stmt, setp, number=5)
ax = res.div(res.min()).T.plot(loglog=True)
ax.set_xlabel("N");
ax.set_ylabel("time (relative)");
plt.show()
add a comment |
Let's start by establishing a benchmark. The easiest method for solving this is using a temporary "key" column:
def cartesian_product_basic(left, right):
return (
left.assign(key=1).merge(right.assign(key=1), on='key').drop('key', 1))
cartesian_product_basic(left, right)
col1_x col2_x col1_y col2_y
0 A 1 X 20
1 A 1 Y 30
2 A 1 Z 50
3 B 2 X 20
4 B 2 Y 30
5 B 2 Z 50
6 C 3 X 20
7 C 3 Y 30
8 C 3 Z 50
How this works is that both DataFrames are assigned a temporary "key" column with the same value (say, 1). merge
then performs a many-to-many JOIN on "key".
While the many-to-many JOIN trick works for reasonably sized DataFrames, you will see relatively lower performance on larger data.
A faster implementation will require NumPy. Here are some famous NumPy implementations of 1D cartesian product. We can build on some of these performant solutions to get our desired output. My favourite, however, is @senderle's first implementation.
def cartesian_product(*arrays):
la = len(arrays)
dtype = np.result_type(*arrays)
arr = np.empty([len(a) for a in arrays] + [la], dtype=dtype)
for i, a in enumerate(np.ix_(*arrays)):
arr[...,i] = a
return arr.reshape(-1, la)
Generalizing: CROSS JOIN on Unique or Non-Unique Indexed DataFrames
Disclaimer
These solutions are optimised for DataFrames with non-mixed scalar dtypes. If dealing with mixed dtypes, use at your
own risk!
This trick will work on any kind of DataFrame. We compute the cartesian product of the DataFrames' numeric indices using the aforementioned cartesian_product
, use this to reindex the DataFrames, and
def cartesian_product_generalized(left, right):
la, lb = len(left), len(right)
idx = cartesian_product(np.ogrid[:la], np.ogrid[:lb])
return pd.DataFrame(
np.column_stack([left.values[idx[:,0]], right.values[idx[:,1]]]))
cartesian_product_generalized(left, right)
0 1 2 3
0 A 1 X 20
1 A 1 Y 30
2 A 1 Z 50
3 B 2 X 20
4 B 2 Y 30
5 B 2 Z 50
6 C 3 X 20
7 C 3 Y 30
8 C 3 Z 50
np.array_equal(cartesian_product_generalized(left, right),
cartesian_product_basic(left, right))
True
And, along similar lines,
left2 = left.copy()
left2.index = ['s1', 's2', 's1']
right2 = right.copy()
right2.index = ['x', 'y', 'y']
left2
col1 col2
s1 A 1
s2 B 2
s1 C 3
right2
col1 col2
x X 20
y Y 30
y Z 50
np.array_equal(cartesian_product_generalized(left, right),
cartesian_product_basic(left2, right2))
True
This solution can generalise to multiple DataFrames. For example,
def cartesian_product_multi(*dfs):
idx = cartesian_product(*[np.ogrid[:len(df)] for df in dfs])
return pd.DataFrame(
np.column_stack([df.values[idx[:,i]] for i,df in enumerate(dfs)]))
cartesian_product_multi(*[left, right, left]).head()
0 1 2 3 4 5
0 A 1 X 20 A 1
1 A 1 X 20 B 2
2 A 1 X 20 C 3
3 A 1 X 20 D 4
4 A 1 Y 30 A 1
Further Simplification
A simpler solution not involving @senderle's cartesian_product
is possible when dealing with just two DataFrames. Using np.broadcast_arrays
, we can achieve almost the same level of performance.
def cartesian_product_simplified(left, right):
la, lb = len(left), len(right)
ia2, ib2 = np.broadcast_arrays(*np.ogrid[:la,:lb])
return pd.DataFrame(
np.column_stack([left.values[ia2.ravel()], right.values[ib2.ravel()]]))
np.array_equal(cartesian_product_simplified(left, right),
cartesian_product_basic(left2, right2))
True
Performance Comparison
Benchmarking these solutions on some contrived DataFrames with unique indices, we have
Do note that timings may vary based on your setup, data, and choice of cartesian_product
helper function as applicable.
Functions from Other Answers
# Wen's answer: https://stackoverflow.com/a/53699198/4909087
# I've put my own spin on this to make it as fast as possible.
def cartesian_product_itertools(left, right):
return pd.DataFrame([
[*x, *y] for x, y in itertools.product(
left.values.tolist(), right.values.tolist())])
Performance Benchmarking Code
This is the timing script. All functions called here are defined above.
from timeit import timeit
import pandas as pd
import matplotlib.pyplot as plt
res = pd.DataFrame(
index=['cartesian_product_basic', 'cartesian_product_generalized',
'cartesian_product_multi', 'cartesian_product_simplified',
'cartesian_product_itertools'],
columns=[1, 10, 50, 100, 200, 300, 400, 500, 600, 800, 1000, 2000],
dtype=float
)
for f in res.index:
for c in res.columns:
# print(f,c)
if f in {'cartesian_product_itertools'} and c > 600:
continue
left2 = pd.concat([left] * c, ignore_index=True)
right2 = pd.concat([right] * c, ignore_index=True)
stmt = '{}(left2, right2)'.format(f)
setp = 'from __main__ import left2, right2, {}'.format(f)
res.at[f, c] = timeit(stmt, setp, number=5)
ax = res.div(res.min()).T.plot(loglog=True)
ax.set_xlabel("N");
ax.set_ylabel("time (relative)");
plt.show()
add a comment |
Let's start by establishing a benchmark. The easiest method for solving this is using a temporary "key" column:
def cartesian_product_basic(left, right):
return (
left.assign(key=1).merge(right.assign(key=1), on='key').drop('key', 1))
cartesian_product_basic(left, right)
col1_x col2_x col1_y col2_y
0 A 1 X 20
1 A 1 Y 30
2 A 1 Z 50
3 B 2 X 20
4 B 2 Y 30
5 B 2 Z 50
6 C 3 X 20
7 C 3 Y 30
8 C 3 Z 50
How this works is that both DataFrames are assigned a temporary "key" column with the same value (say, 1). merge
then performs a many-to-many JOIN on "key".
While the many-to-many JOIN trick works for reasonably sized DataFrames, you will see relatively lower performance on larger data.
A faster implementation will require NumPy. Here are some famous NumPy implementations of 1D cartesian product. We can build on some of these performant solutions to get our desired output. My favourite, however, is @senderle's first implementation.
def cartesian_product(*arrays):
la = len(arrays)
dtype = np.result_type(*arrays)
arr = np.empty([len(a) for a in arrays] + [la], dtype=dtype)
for i, a in enumerate(np.ix_(*arrays)):
arr[...,i] = a
return arr.reshape(-1, la)
Generalizing: CROSS JOIN on Unique or Non-Unique Indexed DataFrames
Disclaimer
These solutions are optimised for DataFrames with non-mixed scalar dtypes. If dealing with mixed dtypes, use at your
own risk!
This trick will work on any kind of DataFrame. We compute the cartesian product of the DataFrames' numeric indices using the aforementioned cartesian_product
, use this to reindex the DataFrames, and
def cartesian_product_generalized(left, right):
la, lb = len(left), len(right)
idx = cartesian_product(np.ogrid[:la], np.ogrid[:lb])
return pd.DataFrame(
np.column_stack([left.values[idx[:,0]], right.values[idx[:,1]]]))
cartesian_product_generalized(left, right)
0 1 2 3
0 A 1 X 20
1 A 1 Y 30
2 A 1 Z 50
3 B 2 X 20
4 B 2 Y 30
5 B 2 Z 50
6 C 3 X 20
7 C 3 Y 30
8 C 3 Z 50
np.array_equal(cartesian_product_generalized(left, right),
cartesian_product_basic(left, right))
True
And, along similar lines,
left2 = left.copy()
left2.index = ['s1', 's2', 's1']
right2 = right.copy()
right2.index = ['x', 'y', 'y']
left2
col1 col2
s1 A 1
s2 B 2
s1 C 3
right2
col1 col2
x X 20
y Y 30
y Z 50
np.array_equal(cartesian_product_generalized(left, right),
cartesian_product_basic(left2, right2))
True
This solution can generalise to multiple DataFrames. For example,
def cartesian_product_multi(*dfs):
idx = cartesian_product(*[np.ogrid[:len(df)] for df in dfs])
return pd.DataFrame(
np.column_stack([df.values[idx[:,i]] for i,df in enumerate(dfs)]))
cartesian_product_multi(*[left, right, left]).head()
0 1 2 3 4 5
0 A 1 X 20 A 1
1 A 1 X 20 B 2
2 A 1 X 20 C 3
3 A 1 X 20 D 4
4 A 1 Y 30 A 1
Further Simplification
A simpler solution not involving @senderle's cartesian_product
is possible when dealing with just two DataFrames. Using np.broadcast_arrays
, we can achieve almost the same level of performance.
def cartesian_product_simplified(left, right):
la, lb = len(left), len(right)
ia2, ib2 = np.broadcast_arrays(*np.ogrid[:la,:lb])
return pd.DataFrame(
np.column_stack([left.values[ia2.ravel()], right.values[ib2.ravel()]]))
np.array_equal(cartesian_product_simplified(left, right),
cartesian_product_basic(left2, right2))
True
Performance Comparison
Benchmarking these solutions on some contrived DataFrames with unique indices, we have
Do note that timings may vary based on your setup, data, and choice of cartesian_product
helper function as applicable.
Functions from Other Answers
# Wen's answer: https://stackoverflow.com/a/53699198/4909087
# I've put my own spin on this to make it as fast as possible.
def cartesian_product_itertools(left, right):
return pd.DataFrame([
[*x, *y] for x, y in itertools.product(
left.values.tolist(), right.values.tolist())])
Performance Benchmarking Code
This is the timing script. All functions called here are defined above.
from timeit import timeit
import pandas as pd
import matplotlib.pyplot as plt
res = pd.DataFrame(
index=['cartesian_product_basic', 'cartesian_product_generalized',
'cartesian_product_multi', 'cartesian_product_simplified',
'cartesian_product_itertools'],
columns=[1, 10, 50, 100, 200, 300, 400, 500, 600, 800, 1000, 2000],
dtype=float
)
for f in res.index:
for c in res.columns:
# print(f,c)
if f in {'cartesian_product_itertools'} and c > 600:
continue
left2 = pd.concat([left] * c, ignore_index=True)
right2 = pd.concat([right] * c, ignore_index=True)
stmt = '{}(left2, right2)'.format(f)
setp = 'from __main__ import left2, right2, {}'.format(f)
res.at[f, c] = timeit(stmt, setp, number=5)
ax = res.div(res.min()).T.plot(loglog=True)
ax.set_xlabel("N");
ax.set_ylabel("time (relative)");
plt.show()
Let's start by establishing a benchmark. The easiest method for solving this is using a temporary "key" column:
def cartesian_product_basic(left, right):
return (
left.assign(key=1).merge(right.assign(key=1), on='key').drop('key', 1))
cartesian_product_basic(left, right)
col1_x col2_x col1_y col2_y
0 A 1 X 20
1 A 1 Y 30
2 A 1 Z 50
3 B 2 X 20
4 B 2 Y 30
5 B 2 Z 50
6 C 3 X 20
7 C 3 Y 30
8 C 3 Z 50
How this works is that both DataFrames are assigned a temporary "key" column with the same value (say, 1). merge
then performs a many-to-many JOIN on "key".
While the many-to-many JOIN trick works for reasonably sized DataFrames, you will see relatively lower performance on larger data.
A faster implementation will require NumPy. Here are some famous NumPy implementations of 1D cartesian product. We can build on some of these performant solutions to get our desired output. My favourite, however, is @senderle's first implementation.
def cartesian_product(*arrays):
la = len(arrays)
dtype = np.result_type(*arrays)
arr = np.empty([len(a) for a in arrays] + [la], dtype=dtype)
for i, a in enumerate(np.ix_(*arrays)):
arr[...,i] = a
return arr.reshape(-1, la)
Generalizing: CROSS JOIN on Unique or Non-Unique Indexed DataFrames
Disclaimer
These solutions are optimised for DataFrames with non-mixed scalar dtypes. If dealing with mixed dtypes, use at your
own risk!
This trick will work on any kind of DataFrame. We compute the cartesian product of the DataFrames' numeric indices using the aforementioned cartesian_product
, use this to reindex the DataFrames, and
def cartesian_product_generalized(left, right):
la, lb = len(left), len(right)
idx = cartesian_product(np.ogrid[:la], np.ogrid[:lb])
return pd.DataFrame(
np.column_stack([left.values[idx[:,0]], right.values[idx[:,1]]]))
cartesian_product_generalized(left, right)
0 1 2 3
0 A 1 X 20
1 A 1 Y 30
2 A 1 Z 50
3 B 2 X 20
4 B 2 Y 30
5 B 2 Z 50
6 C 3 X 20
7 C 3 Y 30
8 C 3 Z 50
np.array_equal(cartesian_product_generalized(left, right),
cartesian_product_basic(left, right))
True
And, along similar lines,
left2 = left.copy()
left2.index = ['s1', 's2', 's1']
right2 = right.copy()
right2.index = ['x', 'y', 'y']
left2
col1 col2
s1 A 1
s2 B 2
s1 C 3
right2
col1 col2
x X 20
y Y 30
y Z 50
np.array_equal(cartesian_product_generalized(left, right),
cartesian_product_basic(left2, right2))
True
This solution can generalise to multiple DataFrames. For example,
def cartesian_product_multi(*dfs):
idx = cartesian_product(*[np.ogrid[:len(df)] for df in dfs])
return pd.DataFrame(
np.column_stack([df.values[idx[:,i]] for i,df in enumerate(dfs)]))
cartesian_product_multi(*[left, right, left]).head()
0 1 2 3 4 5
0 A 1 X 20 A 1
1 A 1 X 20 B 2
2 A 1 X 20 C 3
3 A 1 X 20 D 4
4 A 1 Y 30 A 1
Further Simplification
A simpler solution not involving @senderle's cartesian_product
is possible when dealing with just two DataFrames. Using np.broadcast_arrays
, we can achieve almost the same level of performance.
def cartesian_product_simplified(left, right):
la, lb = len(left), len(right)
ia2, ib2 = np.broadcast_arrays(*np.ogrid[:la,:lb])
return pd.DataFrame(
np.column_stack([left.values[ia2.ravel()], right.values[ib2.ravel()]]))
np.array_equal(cartesian_product_simplified(left, right),
cartesian_product_basic(left2, right2))
True
Performance Comparison
Benchmarking these solutions on some contrived DataFrames with unique indices, we have
Do note that timings may vary based on your setup, data, and choice of cartesian_product
helper function as applicable.
Functions from Other Answers
# Wen's answer: https://stackoverflow.com/a/53699198/4909087
# I've put my own spin on this to make it as fast as possible.
def cartesian_product_itertools(left, right):
return pd.DataFrame([
[*x, *y] for x, y in itertools.product(
left.values.tolist(), right.values.tolist())])
Performance Benchmarking Code
This is the timing script. All functions called here are defined above.
from timeit import timeit
import pandas as pd
import matplotlib.pyplot as plt
res = pd.DataFrame(
index=['cartesian_product_basic', 'cartesian_product_generalized',
'cartesian_product_multi', 'cartesian_product_simplified',
'cartesian_product_itertools'],
columns=[1, 10, 50, 100, 200, 300, 400, 500, 600, 800, 1000, 2000],
dtype=float
)
for f in res.index:
for c in res.columns:
# print(f,c)
if f in {'cartesian_product_itertools'} and c > 600:
continue
left2 = pd.concat([left] * c, ignore_index=True)
right2 = pd.concat([right] * c, ignore_index=True)
stmt = '{}(left2, right2)'.format(f)
setp = 'from __main__ import left2, right2, {}'.format(f)
res.at[f, c] = timeit(stmt, setp, number=5)
ax = res.div(res.min()).T.plot(loglog=True)
ax.set_xlabel("N");
ax.set_ylabel("time (relative)");
plt.show()
edited Dec 12 '18 at 14:58
answered Dec 10 '18 at 3:12
coldspeed
121k21121203
121k21121203
add a comment |
add a comment |
Using itertools
product
and recreate the value in dataframe
import itertools
l=list(itertools.product(left.values.tolist(),right.values.tolist()))
pd.DataFrame(list(map(lambda x : sum(x,),l)))
0 1 2 3
0 A 1 X 20
1 A 1 Y 30
2 A 1 Z 50
3 B 2 X 20
4 B 2 Y 30
5 B 2 Z 50
6 C 3 X 20
7 C 3 Y 30
8 C 3 Z 50
add a comment |
Using itertools
product
and recreate the value in dataframe
import itertools
l=list(itertools.product(left.values.tolist(),right.values.tolist()))
pd.DataFrame(list(map(lambda x : sum(x,),l)))
0 1 2 3
0 A 1 X 20
1 A 1 Y 30
2 A 1 Z 50
3 B 2 X 20
4 B 2 Y 30
5 B 2 Z 50
6 C 3 X 20
7 C 3 Y 30
8 C 3 Z 50
add a comment |
Using itertools
product
and recreate the value in dataframe
import itertools
l=list(itertools.product(left.values.tolist(),right.values.tolist()))
pd.DataFrame(list(map(lambda x : sum(x,),l)))
0 1 2 3
0 A 1 X 20
1 A 1 Y 30
2 A 1 Z 50
3 B 2 X 20
4 B 2 Y 30
5 B 2 Z 50
6 C 3 X 20
7 C 3 Y 30
8 C 3 Z 50
Using itertools
product
and recreate the value in dataframe
import itertools
l=list(itertools.product(left.values.tolist(),right.values.tolist()))
pd.DataFrame(list(map(lambda x : sum(x,),l)))
0 1 2 3
0 A 1 X 20
1 A 1 Y 30
2 A 1 Z 50
3 B 2 X 20
4 B 2 Y 30
5 B 2 Z 50
6 C 3 X 20
7 C 3 Y 30
8 C 3 Z 50
answered Dec 10 '18 at 3:41
W-B
102k73163
102k73163
add a comment |
add a comment |
Here's an approach with triple concat
m = pd.concat([pd.concat([left]*len(right)).sort_index().reset_index(drop=True),
pd.concat([right]*len(left)).reset_index(drop=True) ], 1)
col1 col2 col1 col2
0 A 1 X 20
1 A 1 Y 30
2 A 1 Z 50
3 B 2 X 20
4 B 2 Y 30
5 B 2 Z 50
6 C 3 X 20
7 C 3 Y 30
8 C 3 Z 50
add a comment |
Here's an approach with triple concat
m = pd.concat([pd.concat([left]*len(right)).sort_index().reset_index(drop=True),
pd.concat([right]*len(left)).reset_index(drop=True) ], 1)
col1 col2 col1 col2
0 A 1 X 20
1 A 1 Y 30
2 A 1 Z 50
3 B 2 X 20
4 B 2 Y 30
5 B 2 Z 50
6 C 3 X 20
7 C 3 Y 30
8 C 3 Z 50
add a comment |
Here's an approach with triple concat
m = pd.concat([pd.concat([left]*len(right)).sort_index().reset_index(drop=True),
pd.concat([right]*len(left)).reset_index(drop=True) ], 1)
col1 col2 col1 col2
0 A 1 X 20
1 A 1 Y 30
2 A 1 Z 50
3 B 2 X 20
4 B 2 Y 30
5 B 2 Z 50
6 C 3 X 20
7 C 3 Y 30
8 C 3 Z 50
Here's an approach with triple concat
m = pd.concat([pd.concat([left]*len(right)).sort_index().reset_index(drop=True),
pd.concat([right]*len(left)).reset_index(drop=True) ], 1)
col1 col2 col1 col2
0 A 1 X 20
1 A 1 Y 30
2 A 1 Z 50
3 B 2 X 20
4 B 2 Y 30
5 B 2 Z 50
6 C 3 X 20
7 C 3 Y 30
8 C 3 Z 50
edited Dec 10 '18 at 14:00
answered Dec 10 '18 at 13:39
Dark
21.2k31946
21.2k31946
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53699012%2fperformant-cartesian-product-cross-join-with-pandas%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
Would you like share your input in Github as well , I think adding
cross join
in pandas is really good to match all the join function in SQL . github.com/pandas-dev/pandas/issues/5401– W-B
Dec 11 '18 at 20:58
1
@W-B Thanks! That thread seems interesting, let me see if there's something I can contribute to it.
– coldspeed
Dec 12 '18 at 2:53