Is there a way to draw a level tree
$begingroup$
Consider the following expression.
expr={a,{b1,b2},{c,{d1,d2}}};
One can get the levels in an expression as follows:
ClearAll[levels];
SetAttributes[levels,{HoldAllComplete}];
levels[expr_]:=Column@Table[Level[expr,{level},Heads->True],{level,0,Depth[expr]-1}];
levels[expr]
But if I look at the TreeForm
it is something else.
TreeForm[expr]
Leaf count for this expression should be 10.
LeafCount[expr]
One can try to get the true level tree as follows:
Graph[{
Sequence@@(expr[UndirectedEdge]#&/@{List,a,{b1,b2},{c,{d1,d2}}}),
Sequence@@(expr[[2]][UndirectedEdge]#&/@{List2,b1,b2}),
Sequence@@(expr[[3]][UndirectedEdge]#&/@{List3,c,{d1,d2}}),
Sequence@@(expr[[3,2]][UndirectedEdge]#&/@{List4,d1,d2})
},VertexLabels->"Name"]
Is there a way to produce this graph for arbitrary expression. Also multiple vertices with the same name List
get joined so I have to rename them to List1
, List2
, ... etc. Is there a way to fix this while keeping the layout of the graph.
Basically display Heads
at the same level as their Parts
which is their true position in the tree.
trees
$endgroup$
add a comment |
$begingroup$
Consider the following expression.
expr={a,{b1,b2},{c,{d1,d2}}};
One can get the levels in an expression as follows:
ClearAll[levels];
SetAttributes[levels,{HoldAllComplete}];
levels[expr_]:=Column@Table[Level[expr,{level},Heads->True],{level,0,Depth[expr]-1}];
levels[expr]
But if I look at the TreeForm
it is something else.
TreeForm[expr]
Leaf count for this expression should be 10.
LeafCount[expr]
One can try to get the true level tree as follows:
Graph[{
Sequence@@(expr[UndirectedEdge]#&/@{List,a,{b1,b2},{c,{d1,d2}}}),
Sequence@@(expr[[2]][UndirectedEdge]#&/@{List2,b1,b2}),
Sequence@@(expr[[3]][UndirectedEdge]#&/@{List3,c,{d1,d2}}),
Sequence@@(expr[[3,2]][UndirectedEdge]#&/@{List4,d1,d2})
},VertexLabels->"Name"]
Is there a way to produce this graph for arbitrary expression. Also multiple vertices with the same name List
get joined so I have to rename them to List1
, List2
, ... etc. Is there a way to fix this while keeping the layout of the graph.
Basically display Heads
at the same level as their Parts
which is their true position in the tree.
trees
$endgroup$
add a comment |
$begingroup$
Consider the following expression.
expr={a,{b1,b2},{c,{d1,d2}}};
One can get the levels in an expression as follows:
ClearAll[levels];
SetAttributes[levels,{HoldAllComplete}];
levels[expr_]:=Column@Table[Level[expr,{level},Heads->True],{level,0,Depth[expr]-1}];
levels[expr]
But if I look at the TreeForm
it is something else.
TreeForm[expr]
Leaf count for this expression should be 10.
LeafCount[expr]
One can try to get the true level tree as follows:
Graph[{
Sequence@@(expr[UndirectedEdge]#&/@{List,a,{b1,b2},{c,{d1,d2}}}),
Sequence@@(expr[[2]][UndirectedEdge]#&/@{List2,b1,b2}),
Sequence@@(expr[[3]][UndirectedEdge]#&/@{List3,c,{d1,d2}}),
Sequence@@(expr[[3,2]][UndirectedEdge]#&/@{List4,d1,d2})
},VertexLabels->"Name"]
Is there a way to produce this graph for arbitrary expression. Also multiple vertices with the same name List
get joined so I have to rename them to List1
, List2
, ... etc. Is there a way to fix this while keeping the layout of the graph.
Basically display Heads
at the same level as their Parts
which is their true position in the tree.
trees
$endgroup$
Consider the following expression.
expr={a,{b1,b2},{c,{d1,d2}}};
One can get the levels in an expression as follows:
ClearAll[levels];
SetAttributes[levels,{HoldAllComplete}];
levels[expr_]:=Column@Table[Level[expr,{level},Heads->True],{level,0,Depth[expr]-1}];
levels[expr]
But if I look at the TreeForm
it is something else.
TreeForm[expr]
Leaf count for this expression should be 10.
LeafCount[expr]
One can try to get the true level tree as follows:
Graph[{
Sequence@@(expr[UndirectedEdge]#&/@{List,a,{b1,b2},{c,{d1,d2}}}),
Sequence@@(expr[[2]][UndirectedEdge]#&/@{List2,b1,b2}),
Sequence@@(expr[[3]][UndirectedEdge]#&/@{List3,c,{d1,d2}}),
Sequence@@(expr[[3,2]][UndirectedEdge]#&/@{List4,d1,d2})
},VertexLabels->"Name"]
Is there a way to produce this graph for arbitrary expression. Also multiple vertices with the same name List
get joined so I have to rename them to List1
, List2
, ... etc. Is there a way to fix this while keeping the layout of the graph.
Basically display Heads
at the same level as their Parts
which is their true position in the tree.
trees
trees
edited 5 hours ago
user13892
asked 5 hours ago
user13892user13892
1,089514
1,089514
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
GraphComputation`ExpressionGraph[expr /. List -> (List[List, ##] &)]
TreeForm[expr /. List -> (List[List, ##] &)]
rules = List @@@ SparseArray`ExpressionToTree[expr /. List -> (List[List, ##] &)];
edges = DirectedEdge @@@ (rules[[All, All, 2]] + 1);
vertices = Property[#2 + 1, {VertexLabels -> #3}] & @@@ DeleteDuplicates[Flatten[rules, 1]];
TreeGraph[vertices, edges, ImagePadding -> 40, ImageSize -> 600, VertexSize -> Medium]
Update: An alternative approach is to use the original expression with ExpressionToTree
and add new edges:
g1 = Graph[SparseArray`ExpressionToTree[{a, {b1, b2}, {c, foo[d1, d2]}}],
VertexLabels -> "Name", VertexLabelStyle -> 14, ImageSize -> 600]
newedges = # [DirectedEdge]
{Symbol[ToString[Head[First@Last[#]]] <> ToString[#[[2]]]]} & /@
Select[VertexList[g1], Head[#[[1]]] === Symbol &];
VertexReplace[EdgeAdd[g1, newedges], v_ :> Last[v]]
$endgroup$
add a comment |
$begingroup$
Try the code
levelTree[expr_] := Replace[expr, {h_[x___] -> {h, x}}, {0, Infinity}];
levelTree @ {a, {b1, b2}, {c, {d1, d2}}}
which returns
{List, a, {List, b1, b2}, {List, c, {List, d1, d2}}}
A simple exmaple
levelTree[a b + c d]
which returns
{Plus, {Times, a, b}, {Times, c, d}}
I like the lispy variation
levelTree[expr_] := Replace[expr, (h : Except[List])[x___] -> {h, x}, {0, Infinity}];
levelTree @ plus[car[{1, 2}], cdr[{3, 4}]]
which returns
{plus, {car, {1, 2}}, {cdr, {3, 4}}}
Given any of these results, you can now use TreeForm
or ExpressionGraph
or some other custom Graph display.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "387"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f191909%2fis-there-a-way-to-draw-a-level-tree%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
GraphComputation`ExpressionGraph[expr /. List -> (List[List, ##] &)]
TreeForm[expr /. List -> (List[List, ##] &)]
rules = List @@@ SparseArray`ExpressionToTree[expr /. List -> (List[List, ##] &)];
edges = DirectedEdge @@@ (rules[[All, All, 2]] + 1);
vertices = Property[#2 + 1, {VertexLabels -> #3}] & @@@ DeleteDuplicates[Flatten[rules, 1]];
TreeGraph[vertices, edges, ImagePadding -> 40, ImageSize -> 600, VertexSize -> Medium]
Update: An alternative approach is to use the original expression with ExpressionToTree
and add new edges:
g1 = Graph[SparseArray`ExpressionToTree[{a, {b1, b2}, {c, foo[d1, d2]}}],
VertexLabels -> "Name", VertexLabelStyle -> 14, ImageSize -> 600]
newedges = # [DirectedEdge]
{Symbol[ToString[Head[First@Last[#]]] <> ToString[#[[2]]]]} & /@
Select[VertexList[g1], Head[#[[1]]] === Symbol &];
VertexReplace[EdgeAdd[g1, newedges], v_ :> Last[v]]
$endgroup$
add a comment |
$begingroup$
GraphComputation`ExpressionGraph[expr /. List -> (List[List, ##] &)]
TreeForm[expr /. List -> (List[List, ##] &)]
rules = List @@@ SparseArray`ExpressionToTree[expr /. List -> (List[List, ##] &)];
edges = DirectedEdge @@@ (rules[[All, All, 2]] + 1);
vertices = Property[#2 + 1, {VertexLabels -> #3}] & @@@ DeleteDuplicates[Flatten[rules, 1]];
TreeGraph[vertices, edges, ImagePadding -> 40, ImageSize -> 600, VertexSize -> Medium]
Update: An alternative approach is to use the original expression with ExpressionToTree
and add new edges:
g1 = Graph[SparseArray`ExpressionToTree[{a, {b1, b2}, {c, foo[d1, d2]}}],
VertexLabels -> "Name", VertexLabelStyle -> 14, ImageSize -> 600]
newedges = # [DirectedEdge]
{Symbol[ToString[Head[First@Last[#]]] <> ToString[#[[2]]]]} & /@
Select[VertexList[g1], Head[#[[1]]] === Symbol &];
VertexReplace[EdgeAdd[g1, newedges], v_ :> Last[v]]
$endgroup$
add a comment |
$begingroup$
GraphComputation`ExpressionGraph[expr /. List -> (List[List, ##] &)]
TreeForm[expr /. List -> (List[List, ##] &)]
rules = List @@@ SparseArray`ExpressionToTree[expr /. List -> (List[List, ##] &)];
edges = DirectedEdge @@@ (rules[[All, All, 2]] + 1);
vertices = Property[#2 + 1, {VertexLabels -> #3}] & @@@ DeleteDuplicates[Flatten[rules, 1]];
TreeGraph[vertices, edges, ImagePadding -> 40, ImageSize -> 600, VertexSize -> Medium]
Update: An alternative approach is to use the original expression with ExpressionToTree
and add new edges:
g1 = Graph[SparseArray`ExpressionToTree[{a, {b1, b2}, {c, foo[d1, d2]}}],
VertexLabels -> "Name", VertexLabelStyle -> 14, ImageSize -> 600]
newedges = # [DirectedEdge]
{Symbol[ToString[Head[First@Last[#]]] <> ToString[#[[2]]]]} & /@
Select[VertexList[g1], Head[#[[1]]] === Symbol &];
VertexReplace[EdgeAdd[g1, newedges], v_ :> Last[v]]
$endgroup$
GraphComputation`ExpressionGraph[expr /. List -> (List[List, ##] &)]
TreeForm[expr /. List -> (List[List, ##] &)]
rules = List @@@ SparseArray`ExpressionToTree[expr /. List -> (List[List, ##] &)];
edges = DirectedEdge @@@ (rules[[All, All, 2]] + 1);
vertices = Property[#2 + 1, {VertexLabels -> #3}] & @@@ DeleteDuplicates[Flatten[rules, 1]];
TreeGraph[vertices, edges, ImagePadding -> 40, ImageSize -> 600, VertexSize -> Medium]
Update: An alternative approach is to use the original expression with ExpressionToTree
and add new edges:
g1 = Graph[SparseArray`ExpressionToTree[{a, {b1, b2}, {c, foo[d1, d2]}}],
VertexLabels -> "Name", VertexLabelStyle -> 14, ImageSize -> 600]
newedges = # [DirectedEdge]
{Symbol[ToString[Head[First@Last[#]]] <> ToString[#[[2]]]]} & /@
Select[VertexList[g1], Head[#[[1]]] === Symbol &];
VertexReplace[EdgeAdd[g1, newedges], v_ :> Last[v]]
edited 18 mins ago
answered 4 hours ago
kglrkglr
185k10202420
185k10202420
add a comment |
add a comment |
$begingroup$
Try the code
levelTree[expr_] := Replace[expr, {h_[x___] -> {h, x}}, {0, Infinity}];
levelTree @ {a, {b1, b2}, {c, {d1, d2}}}
which returns
{List, a, {List, b1, b2}, {List, c, {List, d1, d2}}}
A simple exmaple
levelTree[a b + c d]
which returns
{Plus, {Times, a, b}, {Times, c, d}}
I like the lispy variation
levelTree[expr_] := Replace[expr, (h : Except[List])[x___] -> {h, x}, {0, Infinity}];
levelTree @ plus[car[{1, 2}], cdr[{3, 4}]]
which returns
{plus, {car, {1, 2}}, {cdr, {3, 4}}}
Given any of these results, you can now use TreeForm
or ExpressionGraph
or some other custom Graph display.
$endgroup$
add a comment |
$begingroup$
Try the code
levelTree[expr_] := Replace[expr, {h_[x___] -> {h, x}}, {0, Infinity}];
levelTree @ {a, {b1, b2}, {c, {d1, d2}}}
which returns
{List, a, {List, b1, b2}, {List, c, {List, d1, d2}}}
A simple exmaple
levelTree[a b + c d]
which returns
{Plus, {Times, a, b}, {Times, c, d}}
I like the lispy variation
levelTree[expr_] := Replace[expr, (h : Except[List])[x___] -> {h, x}, {0, Infinity}];
levelTree @ plus[car[{1, 2}], cdr[{3, 4}]]
which returns
{plus, {car, {1, 2}}, {cdr, {3, 4}}}
Given any of these results, you can now use TreeForm
or ExpressionGraph
or some other custom Graph display.
$endgroup$
add a comment |
$begingroup$
Try the code
levelTree[expr_] := Replace[expr, {h_[x___] -> {h, x}}, {0, Infinity}];
levelTree @ {a, {b1, b2}, {c, {d1, d2}}}
which returns
{List, a, {List, b1, b2}, {List, c, {List, d1, d2}}}
A simple exmaple
levelTree[a b + c d]
which returns
{Plus, {Times, a, b}, {Times, c, d}}
I like the lispy variation
levelTree[expr_] := Replace[expr, (h : Except[List])[x___] -> {h, x}, {0, Infinity}];
levelTree @ plus[car[{1, 2}], cdr[{3, 4}]]
which returns
{plus, {car, {1, 2}}, {cdr, {3, 4}}}
Given any of these results, you can now use TreeForm
or ExpressionGraph
or some other custom Graph display.
$endgroup$
Try the code
levelTree[expr_] := Replace[expr, {h_[x___] -> {h, x}}, {0, Infinity}];
levelTree @ {a, {b1, b2}, {c, {d1, d2}}}
which returns
{List, a, {List, b1, b2}, {List, c, {List, d1, d2}}}
A simple exmaple
levelTree[a b + c d]
which returns
{Plus, {Times, a, b}, {Times, c, d}}
I like the lispy variation
levelTree[expr_] := Replace[expr, (h : Except[List])[x___] -> {h, x}, {0, Infinity}];
levelTree @ plus[car[{1, 2}], cdr[{3, 4}]]
which returns
{plus, {car, {1, 2}}, {cdr, {3, 4}}}
Given any of these results, you can now use TreeForm
or ExpressionGraph
or some other custom Graph display.
edited 1 hour ago
answered 4 hours ago
SomosSomos
1,12819
1,12819
add a comment |
add a comment |
Thanks for contributing an answer to Mathematica Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f191909%2fis-there-a-way-to-draw-a-level-tree%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown