From 2019 to digits












1












$begingroup$


Is it possible to obtain the digits from 0 to 9 starting from 2019 and using its digits in the same order, together with the usual operations +, *, -, /, concatenation of digits, and the less usual operators ^, !, sqrt(), int()? For example, 1 = 20-19. Unary minus is allowed too.



I manage to use only basic operations and elevation to a power for all digits except 4 and 5, but maybe somebody will do better!










share|improve this question









$endgroup$

















    1












    $begingroup$


    Is it possible to obtain the digits from 0 to 9 starting from 2019 and using its digits in the same order, together with the usual operations +, *, -, /, concatenation of digits, and the less usual operators ^, !, sqrt(), int()? For example, 1 = 20-19. Unary minus is allowed too.



    I manage to use only basic operations and elevation to a power for all digits except 4 and 5, but maybe somebody will do better!










    share|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$


      Is it possible to obtain the digits from 0 to 9 starting from 2019 and using its digits in the same order, together with the usual operations +, *, -, /, concatenation of digits, and the less usual operators ^, !, sqrt(), int()? For example, 1 = 20-19. Unary minus is allowed too.



      I manage to use only basic operations and elevation to a power for all digits except 4 and 5, but maybe somebody will do better!










      share|improve this question









      $endgroup$




      Is it possible to obtain the digits from 0 to 9 starting from 2019 and using its digits in the same order, together with the usual operations +, *, -, /, concatenation of digits, and the less usual operators ^, !, sqrt(), int()? For example, 1 = 20-19. Unary minus is allowed too.



      I manage to use only basic operations and elevation to a power for all digits except 4 and 5, but maybe somebody will do better!







      arithmetic






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Dec 23 '18 at 20:45









      maumau

      1,0041233




      1,0041233






















          1 Answer
          1






          active

          oldest

          votes


















          5












          $begingroup$


          $0 = 2 cdot 0 cdot 1 cdot 9$

          $1 = 20 - 19$

          $2 = 2^0 + 1^9$

          $3 = 2+0+1^9$

          $4 = lfloor sqrt{20} rfloor + lfloor 1/9 rfloor$

          $5 = 2 + 0 cdot 1 + sqrt{9}$

          $6 = -(2+0+1) + 9$

          $7 = -(2+0 cdot 1) + 9$

          $8 = -(2 cdot 0 + 1) + 9$

          $9 = -(2 cdot 0 cdot 1) + 9$







          share|improve this answer











          $endgroup$









          • 1




            $begingroup$
            @deepthought Fixed.
            $endgroup$
            – Display name
            Dec 23 '18 at 21:29






          • 3




            $begingroup$
            Nice! 4 may also be $2cdot 0 + 1 + sqrt 9$
            $endgroup$
            – mau
            Dec 23 '18 at 21:48






          • 1




            $begingroup$
            A few more for 4 and 5: $lfloorsqrt{sqrt{20times19}}rfloor=4$, $lceilsqrt{sqrt{20times19}}rceil=5$ , $lceilsqrt{2+0+1+9}rceil=4$ , $lfloorsqrt{2+0+19}rfloor=4$ , $lceilsqrt{2+0+19}rceil=5$
            $endgroup$
            – JonMark Perry
            Dec 23 '18 at 22:02








          • 1




            $begingroup$
            and $lfloorsqrt{201}rfloor-9=5$
            $endgroup$
            – JonMark Perry
            Dec 23 '18 at 22:05






          • 1




            $begingroup$
            Fun fact: $-lfloor -x rfloor = lceil x rceil.$
            $endgroup$
            – Display name
            Dec 23 '18 at 22:55













          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "559"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fpuzzling.stackexchange.com%2fquestions%2f77737%2ffrom-2019-to-digits%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          5












          $begingroup$


          $0 = 2 cdot 0 cdot 1 cdot 9$

          $1 = 20 - 19$

          $2 = 2^0 + 1^9$

          $3 = 2+0+1^9$

          $4 = lfloor sqrt{20} rfloor + lfloor 1/9 rfloor$

          $5 = 2 + 0 cdot 1 + sqrt{9}$

          $6 = -(2+0+1) + 9$

          $7 = -(2+0 cdot 1) + 9$

          $8 = -(2 cdot 0 + 1) + 9$

          $9 = -(2 cdot 0 cdot 1) + 9$







          share|improve this answer











          $endgroup$









          • 1




            $begingroup$
            @deepthought Fixed.
            $endgroup$
            – Display name
            Dec 23 '18 at 21:29






          • 3




            $begingroup$
            Nice! 4 may also be $2cdot 0 + 1 + sqrt 9$
            $endgroup$
            – mau
            Dec 23 '18 at 21:48






          • 1




            $begingroup$
            A few more for 4 and 5: $lfloorsqrt{sqrt{20times19}}rfloor=4$, $lceilsqrt{sqrt{20times19}}rceil=5$ , $lceilsqrt{2+0+1+9}rceil=4$ , $lfloorsqrt{2+0+19}rfloor=4$ , $lceilsqrt{2+0+19}rceil=5$
            $endgroup$
            – JonMark Perry
            Dec 23 '18 at 22:02








          • 1




            $begingroup$
            and $lfloorsqrt{201}rfloor-9=5$
            $endgroup$
            – JonMark Perry
            Dec 23 '18 at 22:05






          • 1




            $begingroup$
            Fun fact: $-lfloor -x rfloor = lceil x rceil.$
            $endgroup$
            – Display name
            Dec 23 '18 at 22:55


















          5












          $begingroup$


          $0 = 2 cdot 0 cdot 1 cdot 9$

          $1 = 20 - 19$

          $2 = 2^0 + 1^9$

          $3 = 2+0+1^9$

          $4 = lfloor sqrt{20} rfloor + lfloor 1/9 rfloor$

          $5 = 2 + 0 cdot 1 + sqrt{9}$

          $6 = -(2+0+1) + 9$

          $7 = -(2+0 cdot 1) + 9$

          $8 = -(2 cdot 0 + 1) + 9$

          $9 = -(2 cdot 0 cdot 1) + 9$







          share|improve this answer











          $endgroup$









          • 1




            $begingroup$
            @deepthought Fixed.
            $endgroup$
            – Display name
            Dec 23 '18 at 21:29






          • 3




            $begingroup$
            Nice! 4 may also be $2cdot 0 + 1 + sqrt 9$
            $endgroup$
            – mau
            Dec 23 '18 at 21:48






          • 1




            $begingroup$
            A few more for 4 and 5: $lfloorsqrt{sqrt{20times19}}rfloor=4$, $lceilsqrt{sqrt{20times19}}rceil=5$ , $lceilsqrt{2+0+1+9}rceil=4$ , $lfloorsqrt{2+0+19}rfloor=4$ , $lceilsqrt{2+0+19}rceil=5$
            $endgroup$
            – JonMark Perry
            Dec 23 '18 at 22:02








          • 1




            $begingroup$
            and $lfloorsqrt{201}rfloor-9=5$
            $endgroup$
            – JonMark Perry
            Dec 23 '18 at 22:05






          • 1




            $begingroup$
            Fun fact: $-lfloor -x rfloor = lceil x rceil.$
            $endgroup$
            – Display name
            Dec 23 '18 at 22:55
















          5












          5








          5





          $begingroup$


          $0 = 2 cdot 0 cdot 1 cdot 9$

          $1 = 20 - 19$

          $2 = 2^0 + 1^9$

          $3 = 2+0+1^9$

          $4 = lfloor sqrt{20} rfloor + lfloor 1/9 rfloor$

          $5 = 2 + 0 cdot 1 + sqrt{9}$

          $6 = -(2+0+1) + 9$

          $7 = -(2+0 cdot 1) + 9$

          $8 = -(2 cdot 0 + 1) + 9$

          $9 = -(2 cdot 0 cdot 1) + 9$







          share|improve this answer











          $endgroup$




          $0 = 2 cdot 0 cdot 1 cdot 9$

          $1 = 20 - 19$

          $2 = 2^0 + 1^9$

          $3 = 2+0+1^9$

          $4 = lfloor sqrt{20} rfloor + lfloor 1/9 rfloor$

          $5 = 2 + 0 cdot 1 + sqrt{9}$

          $6 = -(2+0+1) + 9$

          $7 = -(2+0 cdot 1) + 9$

          $8 = -(2 cdot 0 + 1) + 9$

          $9 = -(2 cdot 0 cdot 1) + 9$








          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited Dec 24 '18 at 5:20









          S. M.

          953419




          953419










          answered Dec 23 '18 at 21:13









          Display nameDisplay name

          1,000217




          1,000217








          • 1




            $begingroup$
            @deepthought Fixed.
            $endgroup$
            – Display name
            Dec 23 '18 at 21:29






          • 3




            $begingroup$
            Nice! 4 may also be $2cdot 0 + 1 + sqrt 9$
            $endgroup$
            – mau
            Dec 23 '18 at 21:48






          • 1




            $begingroup$
            A few more for 4 and 5: $lfloorsqrt{sqrt{20times19}}rfloor=4$, $lceilsqrt{sqrt{20times19}}rceil=5$ , $lceilsqrt{2+0+1+9}rceil=4$ , $lfloorsqrt{2+0+19}rfloor=4$ , $lceilsqrt{2+0+19}rceil=5$
            $endgroup$
            – JonMark Perry
            Dec 23 '18 at 22:02








          • 1




            $begingroup$
            and $lfloorsqrt{201}rfloor-9=5$
            $endgroup$
            – JonMark Perry
            Dec 23 '18 at 22:05






          • 1




            $begingroup$
            Fun fact: $-lfloor -x rfloor = lceil x rceil.$
            $endgroup$
            – Display name
            Dec 23 '18 at 22:55
















          • 1




            $begingroup$
            @deepthought Fixed.
            $endgroup$
            – Display name
            Dec 23 '18 at 21:29






          • 3




            $begingroup$
            Nice! 4 may also be $2cdot 0 + 1 + sqrt 9$
            $endgroup$
            – mau
            Dec 23 '18 at 21:48






          • 1




            $begingroup$
            A few more for 4 and 5: $lfloorsqrt{sqrt{20times19}}rfloor=4$, $lceilsqrt{sqrt{20times19}}rceil=5$ , $lceilsqrt{2+0+1+9}rceil=4$ , $lfloorsqrt{2+0+19}rfloor=4$ , $lceilsqrt{2+0+19}rceil=5$
            $endgroup$
            – JonMark Perry
            Dec 23 '18 at 22:02








          • 1




            $begingroup$
            and $lfloorsqrt{201}rfloor-9=5$
            $endgroup$
            – JonMark Perry
            Dec 23 '18 at 22:05






          • 1




            $begingroup$
            Fun fact: $-lfloor -x rfloor = lceil x rceil.$
            $endgroup$
            – Display name
            Dec 23 '18 at 22:55










          1




          1




          $begingroup$
          @deepthought Fixed.
          $endgroup$
          – Display name
          Dec 23 '18 at 21:29




          $begingroup$
          @deepthought Fixed.
          $endgroup$
          – Display name
          Dec 23 '18 at 21:29




          3




          3




          $begingroup$
          Nice! 4 may also be $2cdot 0 + 1 + sqrt 9$
          $endgroup$
          – mau
          Dec 23 '18 at 21:48




          $begingroup$
          Nice! 4 may also be $2cdot 0 + 1 + sqrt 9$
          $endgroup$
          – mau
          Dec 23 '18 at 21:48




          1




          1




          $begingroup$
          A few more for 4 and 5: $lfloorsqrt{sqrt{20times19}}rfloor=4$, $lceilsqrt{sqrt{20times19}}rceil=5$ , $lceilsqrt{2+0+1+9}rceil=4$ , $lfloorsqrt{2+0+19}rfloor=4$ , $lceilsqrt{2+0+19}rceil=5$
          $endgroup$
          – JonMark Perry
          Dec 23 '18 at 22:02






          $begingroup$
          A few more for 4 and 5: $lfloorsqrt{sqrt{20times19}}rfloor=4$, $lceilsqrt{sqrt{20times19}}rceil=5$ , $lceilsqrt{2+0+1+9}rceil=4$ , $lfloorsqrt{2+0+19}rfloor=4$ , $lceilsqrt{2+0+19}rceil=5$
          $endgroup$
          – JonMark Perry
          Dec 23 '18 at 22:02






          1




          1




          $begingroup$
          and $lfloorsqrt{201}rfloor-9=5$
          $endgroup$
          – JonMark Perry
          Dec 23 '18 at 22:05




          $begingroup$
          and $lfloorsqrt{201}rfloor-9=5$
          $endgroup$
          – JonMark Perry
          Dec 23 '18 at 22:05




          1




          1




          $begingroup$
          Fun fact: $-lfloor -x rfloor = lceil x rceil.$
          $endgroup$
          – Display name
          Dec 23 '18 at 22:55






          $begingroup$
          Fun fact: $-lfloor -x rfloor = lceil x rceil.$
          $endgroup$
          – Display name
          Dec 23 '18 at 22:55




















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Puzzling Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fpuzzling.stackexchange.com%2fquestions%2f77737%2ffrom-2019-to-digits%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Сан-Квентин

          8-я гвардейская общевойсковая армия

          Алькесар