Is it possible to boil a liquid by just mixing many immiscible liquids together?












2












$begingroup$


In open air, when vapour pressure reaches 1 atm, boiling takes place.



I read that if we add two immiscible liquids together, the total vapour pressure of the 'mixture' is close to p=p*A+p*B, means that the vapour pressure of the 'mixture' is higher than the vapour pressure of both the constituent liquids, subsequently means that the 'mixture' boils at lower temperature than both of the constituent liquids.



If we have many liquids which are not immiscible with each other, and we add them together to form a 'mixture' such that p=p*A+p*B+...>1 atm, will boiling results at room temperature?



I suspect we have many liquids which are not miscible with each other, since we classify solvents as organic solvent and inorganic solvent only, but let's say we indeed have that (or we have two immiscible liquids volatile enough to make p>1atm), what will be observed? Boiling at room temperature? In that case, we can use the vapour to do work (eg rotate turbine), but when we mix immiscible liquid together there should be no energy transaction right? The particles do not react with each other. If all these are true, we are actually doing work without any input which violates the first law, so there must be something wrong with my reasoning above.










share|improve this question









$endgroup$

















    2












    $begingroup$


    In open air, when vapour pressure reaches 1 atm, boiling takes place.



    I read that if we add two immiscible liquids together, the total vapour pressure of the 'mixture' is close to p=p*A+p*B, means that the vapour pressure of the 'mixture' is higher than the vapour pressure of both the constituent liquids, subsequently means that the 'mixture' boils at lower temperature than both of the constituent liquids.



    If we have many liquids which are not immiscible with each other, and we add them together to form a 'mixture' such that p=p*A+p*B+...>1 atm, will boiling results at room temperature?



    I suspect we have many liquids which are not miscible with each other, since we classify solvents as organic solvent and inorganic solvent only, but let's say we indeed have that (or we have two immiscible liquids volatile enough to make p>1atm), what will be observed? Boiling at room temperature? In that case, we can use the vapour to do work (eg rotate turbine), but when we mix immiscible liquid together there should be no energy transaction right? The particles do not react with each other. If all these are true, we are actually doing work without any input which violates the first law, so there must be something wrong with my reasoning above.










    share|improve this question









    $endgroup$















      2












      2








      2





      $begingroup$


      In open air, when vapour pressure reaches 1 atm, boiling takes place.



      I read that if we add two immiscible liquids together, the total vapour pressure of the 'mixture' is close to p=p*A+p*B, means that the vapour pressure of the 'mixture' is higher than the vapour pressure of both the constituent liquids, subsequently means that the 'mixture' boils at lower temperature than both of the constituent liquids.



      If we have many liquids which are not immiscible with each other, and we add them together to form a 'mixture' such that p=p*A+p*B+...>1 atm, will boiling results at room temperature?



      I suspect we have many liquids which are not miscible with each other, since we classify solvents as organic solvent and inorganic solvent only, but let's say we indeed have that (or we have two immiscible liquids volatile enough to make p>1atm), what will be observed? Boiling at room temperature? In that case, we can use the vapour to do work (eg rotate turbine), but when we mix immiscible liquid together there should be no energy transaction right? The particles do not react with each other. If all these are true, we are actually doing work without any input which violates the first law, so there must be something wrong with my reasoning above.










      share|improve this question









      $endgroup$




      In open air, when vapour pressure reaches 1 atm, boiling takes place.



      I read that if we add two immiscible liquids together, the total vapour pressure of the 'mixture' is close to p=p*A+p*B, means that the vapour pressure of the 'mixture' is higher than the vapour pressure of both the constituent liquids, subsequently means that the 'mixture' boils at lower temperature than both of the constituent liquids.



      If we have many liquids which are not immiscible with each other, and we add them together to form a 'mixture' such that p=p*A+p*B+...>1 atm, will boiling results at room temperature?



      I suspect we have many liquids which are not miscible with each other, since we classify solvents as organic solvent and inorganic solvent only, but let's say we indeed have that (or we have two immiscible liquids volatile enough to make p>1atm), what will be observed? Boiling at room temperature? In that case, we can use the vapour to do work (eg rotate turbine), but when we mix immiscible liquid together there should be no energy transaction right? The particles do not react with each other. If all these are true, we are actually doing work without any input which violates the first law, so there must be something wrong with my reasoning above.







      physical-chemistry thermodynamics mixtures






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked 2 hours ago









      The99sLearnerThe99sLearner

      156211




      156211






















          2 Answers
          2






          active

          oldest

          votes


















          2












          $begingroup$

          Nothing special would happen, immiscible liquids would just form layers. As for the expression, $$p_T=Sigma p^o_i$$



          I suggest you read this answer. Quoting Ivan Neretin:




          This is not just some vapor pressure. This is the equilibrium vapor pressure. Thermodynamics is all about equilibrium, you know. And equilibrium, roughly speaking, is what takes place in a closed container after a billion years.




          It would take infinite time for that expression to prove itself correct.



          In speaking within an average man's lifespan, the liquids would remain in separate layers, with the pressure above liquid surface would remain approximately the pure liquid vapour pressure ($p^o$) of the uppermost layer if left undisturbed (according to your question: no energy transactions).



          Don't worry about the first law: it is rarely violated these days.





          This "equilibrium" can be attained sooner by agitation (stirring) of the mixture, but mechanical stirring certainly counts as work done.



          From a chemguide page:




          Obviously if you have two immiscible liquids in a closed flask and keep everything still, the vapour pressure you measure will simply be the vapour pressure of the one which is floating on top. There is no way that the bottom liquid can turn to vapour. The top one is sealing it in.



          Agitated mixtures of immiscible liquids will boil at a temperature lower than the boiling point of either of the pure liquids. Their combined vapour pressures are bound to reach the external pressure before the vapour pressure of either of the individual components get there.




          In other words, although less evident, even if you do get the mixture to boil and do work, it would be because you had done work on it earlier during agitation.






          share|improve this answer











          $endgroup$





















            2












            $begingroup$

            Yes they will boil all right. Sure, there might be some kinetic impediment to it if you let the liquids to settle in layers, but if you stir them so as to expose their surfaces, they will boil. This is what steam distillation is all about.



            As for the first law, it will hold just fine. You burn your firewood, you get the heat, but it is not for free: the firewood is gone. Same thing here. Your liquids are gone. What you have now is a vapor mixture. Sure, you may cool it down, and it will separate back into the liquids, which you may then heat up and repeat... Congratulations, you've just invented the steam engine. Pity it's been done before by one James Watt. Also, you don't really need two liquids for it.



            So it goes.






            share|improve this answer









            $endgroup$














              Your Answer








              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "431"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: false,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: null,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f112769%2fis-it-possible-to-boil-a-liquid-by-just-mixing-many-immiscible-liquids-together%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              2












              $begingroup$

              Nothing special would happen, immiscible liquids would just form layers. As for the expression, $$p_T=Sigma p^o_i$$



              I suggest you read this answer. Quoting Ivan Neretin:




              This is not just some vapor pressure. This is the equilibrium vapor pressure. Thermodynamics is all about equilibrium, you know. And equilibrium, roughly speaking, is what takes place in a closed container after a billion years.




              It would take infinite time for that expression to prove itself correct.



              In speaking within an average man's lifespan, the liquids would remain in separate layers, with the pressure above liquid surface would remain approximately the pure liquid vapour pressure ($p^o$) of the uppermost layer if left undisturbed (according to your question: no energy transactions).



              Don't worry about the first law: it is rarely violated these days.





              This "equilibrium" can be attained sooner by agitation (stirring) of the mixture, but mechanical stirring certainly counts as work done.



              From a chemguide page:




              Obviously if you have two immiscible liquids in a closed flask and keep everything still, the vapour pressure you measure will simply be the vapour pressure of the one which is floating on top. There is no way that the bottom liquid can turn to vapour. The top one is sealing it in.



              Agitated mixtures of immiscible liquids will boil at a temperature lower than the boiling point of either of the pure liquids. Their combined vapour pressures are bound to reach the external pressure before the vapour pressure of either of the individual components get there.




              In other words, although less evident, even if you do get the mixture to boil and do work, it would be because you had done work on it earlier during agitation.






              share|improve this answer











              $endgroup$


















                2












                $begingroup$

                Nothing special would happen, immiscible liquids would just form layers. As for the expression, $$p_T=Sigma p^o_i$$



                I suggest you read this answer. Quoting Ivan Neretin:




                This is not just some vapor pressure. This is the equilibrium vapor pressure. Thermodynamics is all about equilibrium, you know. And equilibrium, roughly speaking, is what takes place in a closed container after a billion years.




                It would take infinite time for that expression to prove itself correct.



                In speaking within an average man's lifespan, the liquids would remain in separate layers, with the pressure above liquid surface would remain approximately the pure liquid vapour pressure ($p^o$) of the uppermost layer if left undisturbed (according to your question: no energy transactions).



                Don't worry about the first law: it is rarely violated these days.





                This "equilibrium" can be attained sooner by agitation (stirring) of the mixture, but mechanical stirring certainly counts as work done.



                From a chemguide page:




                Obviously if you have two immiscible liquids in a closed flask and keep everything still, the vapour pressure you measure will simply be the vapour pressure of the one which is floating on top. There is no way that the bottom liquid can turn to vapour. The top one is sealing it in.



                Agitated mixtures of immiscible liquids will boil at a temperature lower than the boiling point of either of the pure liquids. Their combined vapour pressures are bound to reach the external pressure before the vapour pressure of either of the individual components get there.




                In other words, although less evident, even if you do get the mixture to boil and do work, it would be because you had done work on it earlier during agitation.






                share|improve this answer











                $endgroup$
















                  2












                  2








                  2





                  $begingroup$

                  Nothing special would happen, immiscible liquids would just form layers. As for the expression, $$p_T=Sigma p^o_i$$



                  I suggest you read this answer. Quoting Ivan Neretin:




                  This is not just some vapor pressure. This is the equilibrium vapor pressure. Thermodynamics is all about equilibrium, you know. And equilibrium, roughly speaking, is what takes place in a closed container after a billion years.




                  It would take infinite time for that expression to prove itself correct.



                  In speaking within an average man's lifespan, the liquids would remain in separate layers, with the pressure above liquid surface would remain approximately the pure liquid vapour pressure ($p^o$) of the uppermost layer if left undisturbed (according to your question: no energy transactions).



                  Don't worry about the first law: it is rarely violated these days.





                  This "equilibrium" can be attained sooner by agitation (stirring) of the mixture, but mechanical stirring certainly counts as work done.



                  From a chemguide page:




                  Obviously if you have two immiscible liquids in a closed flask and keep everything still, the vapour pressure you measure will simply be the vapour pressure of the one which is floating on top. There is no way that the bottom liquid can turn to vapour. The top one is sealing it in.



                  Agitated mixtures of immiscible liquids will boil at a temperature lower than the boiling point of either of the pure liquids. Their combined vapour pressures are bound to reach the external pressure before the vapour pressure of either of the individual components get there.




                  In other words, although less evident, even if you do get the mixture to boil and do work, it would be because you had done work on it earlier during agitation.






                  share|improve this answer











                  $endgroup$



                  Nothing special would happen, immiscible liquids would just form layers. As for the expression, $$p_T=Sigma p^o_i$$



                  I suggest you read this answer. Quoting Ivan Neretin:




                  This is not just some vapor pressure. This is the equilibrium vapor pressure. Thermodynamics is all about equilibrium, you know. And equilibrium, roughly speaking, is what takes place in a closed container after a billion years.




                  It would take infinite time for that expression to prove itself correct.



                  In speaking within an average man's lifespan, the liquids would remain in separate layers, with the pressure above liquid surface would remain approximately the pure liquid vapour pressure ($p^o$) of the uppermost layer if left undisturbed (according to your question: no energy transactions).



                  Don't worry about the first law: it is rarely violated these days.





                  This "equilibrium" can be attained sooner by agitation (stirring) of the mixture, but mechanical stirring certainly counts as work done.



                  From a chemguide page:




                  Obviously if you have two immiscible liquids in a closed flask and keep everything still, the vapour pressure you measure will simply be the vapour pressure of the one which is floating on top. There is no way that the bottom liquid can turn to vapour. The top one is sealing it in.



                  Agitated mixtures of immiscible liquids will boil at a temperature lower than the boiling point of either of the pure liquids. Their combined vapour pressures are bound to reach the external pressure before the vapour pressure of either of the individual components get there.




                  In other words, although less evident, even if you do get the mixture to boil and do work, it would be because you had done work on it earlier during agitation.







                  share|improve this answer














                  share|improve this answer



                  share|improve this answer








                  edited 1 hour ago

























                  answered 1 hour ago









                  William R. EbenezerWilliam R. Ebenezer

                  82718




                  82718























                      2












                      $begingroup$

                      Yes they will boil all right. Sure, there might be some kinetic impediment to it if you let the liquids to settle in layers, but if you stir them so as to expose their surfaces, they will boil. This is what steam distillation is all about.



                      As for the first law, it will hold just fine. You burn your firewood, you get the heat, but it is not for free: the firewood is gone. Same thing here. Your liquids are gone. What you have now is a vapor mixture. Sure, you may cool it down, and it will separate back into the liquids, which you may then heat up and repeat... Congratulations, you've just invented the steam engine. Pity it's been done before by one James Watt. Also, you don't really need two liquids for it.



                      So it goes.






                      share|improve this answer









                      $endgroup$


















                        2












                        $begingroup$

                        Yes they will boil all right. Sure, there might be some kinetic impediment to it if you let the liquids to settle in layers, but if you stir them so as to expose their surfaces, they will boil. This is what steam distillation is all about.



                        As for the first law, it will hold just fine. You burn your firewood, you get the heat, but it is not for free: the firewood is gone. Same thing here. Your liquids are gone. What you have now is a vapor mixture. Sure, you may cool it down, and it will separate back into the liquids, which you may then heat up and repeat... Congratulations, you've just invented the steam engine. Pity it's been done before by one James Watt. Also, you don't really need two liquids for it.



                        So it goes.






                        share|improve this answer









                        $endgroup$
















                          2












                          2








                          2





                          $begingroup$

                          Yes they will boil all right. Sure, there might be some kinetic impediment to it if you let the liquids to settle in layers, but if you stir them so as to expose their surfaces, they will boil. This is what steam distillation is all about.



                          As for the first law, it will hold just fine. You burn your firewood, you get the heat, but it is not for free: the firewood is gone. Same thing here. Your liquids are gone. What you have now is a vapor mixture. Sure, you may cool it down, and it will separate back into the liquids, which you may then heat up and repeat... Congratulations, you've just invented the steam engine. Pity it's been done before by one James Watt. Also, you don't really need two liquids for it.



                          So it goes.






                          share|improve this answer









                          $endgroup$



                          Yes they will boil all right. Sure, there might be some kinetic impediment to it if you let the liquids to settle in layers, but if you stir them so as to expose their surfaces, they will boil. This is what steam distillation is all about.



                          As for the first law, it will hold just fine. You burn your firewood, you get the heat, but it is not for free: the firewood is gone. Same thing here. Your liquids are gone. What you have now is a vapor mixture. Sure, you may cool it down, and it will separate back into the liquids, which you may then heat up and repeat... Congratulations, you've just invented the steam engine. Pity it's been done before by one James Watt. Also, you don't really need two liquids for it.



                          So it goes.







                          share|improve this answer












                          share|improve this answer



                          share|improve this answer










                          answered 1 hour ago









                          Ivan NeretinIvan Neretin

                          23.9k34990




                          23.9k34990






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Chemistry Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f112769%2fis-it-possible-to-boil-a-liquid-by-just-mixing-many-immiscible-liquids-together%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Сан-Квентин

                              Алькесар

                              Josef Freinademetz