Scale dummy variables in logistic regression
Let's say I have a data set that mixes categorical and continuous features and I would like to study the relative importance of each feature in the prediction of a certain class.
For that I am using the logistic regression with an l1 penalty because I want a sparse solution that maximizes the ROCAUC.
Before training the logistic regression, I first created dummy variables for my categorical features and I centered and scaled all my features, including the dummy variables I have created.
Can I center and scale the dummy variables? Because I want to compare the coefficients of the logistic regression trained on the data set in order to rank the features.
Thanks for the help!
logistic classification importance
add a comment |
Let's say I have a data set that mixes categorical and continuous features and I would like to study the relative importance of each feature in the prediction of a certain class.
For that I am using the logistic regression with an l1 penalty because I want a sparse solution that maximizes the ROCAUC.
Before training the logistic regression, I first created dummy variables for my categorical features and I centered and scaled all my features, including the dummy variables I have created.
Can I center and scale the dummy variables? Because I want to compare the coefficients of the logistic regression trained on the data set in order to rank the features.
Thanks for the help!
logistic classification importance
add a comment |
Let's say I have a data set that mixes categorical and continuous features and I would like to study the relative importance of each feature in the prediction of a certain class.
For that I am using the logistic regression with an l1 penalty because I want a sparse solution that maximizes the ROCAUC.
Before training the logistic regression, I first created dummy variables for my categorical features and I centered and scaled all my features, including the dummy variables I have created.
Can I center and scale the dummy variables? Because I want to compare the coefficients of the logistic regression trained on the data set in order to rank the features.
Thanks for the help!
logistic classification importance
Let's say I have a data set that mixes categorical and continuous features and I would like to study the relative importance of each feature in the prediction of a certain class.
For that I am using the logistic regression with an l1 penalty because I want a sparse solution that maximizes the ROCAUC.
Before training the logistic regression, I first created dummy variables for my categorical features and I centered and scaled all my features, including the dummy variables I have created.
Can I center and scale the dummy variables? Because I want to compare the coefficients of the logistic regression trained on the data set in order to rank the features.
Thanks for the help!
logistic classification importance
logistic classification importance
asked Dec 12 '18 at 13:15
shztshzt
212
212
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
AUROC ($c$-index; concordance probability, Somers' $D_{xy}$ rank correlation) is not a valid objective for optimization. It is fooled by a terribly miscalibrated model and is inefficient. Maximum likelihood estimation exists for a reason: optimizing the log likelihood function results in optimality properties of the estimators.
And don't scale indicator variables. This adds confusion to the interpretation of coefficients.
Don't rank features unless you accompany this with bootstrap confidence intervals for the ranks. You'll find that variable importance measures are volatile. The data do not have sufficient information to tell you which features of the data are most important. This is even more true when predictors are correlated.
2
Could you possibly talk a bit more about this part: "The data do not have sufficient information to tell you which features of the data are most important.". I always thought when 2 variables are z-transformed one can say a change in x for 1 standard-dev leads to a change of b(x) standard-dev in y. Therefor i would interpret the variable with the larger Beta as more influential on y than others. It would be really helpful for me if you could add a few words and/or sources. Thanks in advance.
– TinglTanglBob
Dec 12 '18 at 16:02
Thank you Frank for your help. Noted, I will not scale indicator variables and will calculate the bootstrap confidence intervals. Why is therefore AUROC commonly used if it is inefficient? Thanks again!
– shzt
Dec 13 '18 at 9:35
A good question. Lots of bad ideas put into use in the world. I think people find the concordance probability to be the most interpretable measure of predictive discrimination, and think it should be favored over proper scoring rules for that reason.
– Frank Harrell
Dec 13 '18 at 12:40
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "65"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f381643%2fscale-dummy-variables-in-logistic-regression%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
AUROC ($c$-index; concordance probability, Somers' $D_{xy}$ rank correlation) is not a valid objective for optimization. It is fooled by a terribly miscalibrated model and is inefficient. Maximum likelihood estimation exists for a reason: optimizing the log likelihood function results in optimality properties of the estimators.
And don't scale indicator variables. This adds confusion to the interpretation of coefficients.
Don't rank features unless you accompany this with bootstrap confidence intervals for the ranks. You'll find that variable importance measures are volatile. The data do not have sufficient information to tell you which features of the data are most important. This is even more true when predictors are correlated.
2
Could you possibly talk a bit more about this part: "The data do not have sufficient information to tell you which features of the data are most important.". I always thought when 2 variables are z-transformed one can say a change in x for 1 standard-dev leads to a change of b(x) standard-dev in y. Therefor i would interpret the variable with the larger Beta as more influential on y than others. It would be really helpful for me if you could add a few words and/or sources. Thanks in advance.
– TinglTanglBob
Dec 12 '18 at 16:02
Thank you Frank for your help. Noted, I will not scale indicator variables and will calculate the bootstrap confidence intervals. Why is therefore AUROC commonly used if it is inefficient? Thanks again!
– shzt
Dec 13 '18 at 9:35
A good question. Lots of bad ideas put into use in the world. I think people find the concordance probability to be the most interpretable measure of predictive discrimination, and think it should be favored over proper scoring rules for that reason.
– Frank Harrell
Dec 13 '18 at 12:40
add a comment |
AUROC ($c$-index; concordance probability, Somers' $D_{xy}$ rank correlation) is not a valid objective for optimization. It is fooled by a terribly miscalibrated model and is inefficient. Maximum likelihood estimation exists for a reason: optimizing the log likelihood function results in optimality properties of the estimators.
And don't scale indicator variables. This adds confusion to the interpretation of coefficients.
Don't rank features unless you accompany this with bootstrap confidence intervals for the ranks. You'll find that variable importance measures are volatile. The data do not have sufficient information to tell you which features of the data are most important. This is even more true when predictors are correlated.
2
Could you possibly talk a bit more about this part: "The data do not have sufficient information to tell you which features of the data are most important.". I always thought when 2 variables are z-transformed one can say a change in x for 1 standard-dev leads to a change of b(x) standard-dev in y. Therefor i would interpret the variable with the larger Beta as more influential on y than others. It would be really helpful for me if you could add a few words and/or sources. Thanks in advance.
– TinglTanglBob
Dec 12 '18 at 16:02
Thank you Frank for your help. Noted, I will not scale indicator variables and will calculate the bootstrap confidence intervals. Why is therefore AUROC commonly used if it is inefficient? Thanks again!
– shzt
Dec 13 '18 at 9:35
A good question. Lots of bad ideas put into use in the world. I think people find the concordance probability to be the most interpretable measure of predictive discrimination, and think it should be favored over proper scoring rules for that reason.
– Frank Harrell
Dec 13 '18 at 12:40
add a comment |
AUROC ($c$-index; concordance probability, Somers' $D_{xy}$ rank correlation) is not a valid objective for optimization. It is fooled by a terribly miscalibrated model and is inefficient. Maximum likelihood estimation exists for a reason: optimizing the log likelihood function results in optimality properties of the estimators.
And don't scale indicator variables. This adds confusion to the interpretation of coefficients.
Don't rank features unless you accompany this with bootstrap confidence intervals for the ranks. You'll find that variable importance measures are volatile. The data do not have sufficient information to tell you which features of the data are most important. This is even more true when predictors are correlated.
AUROC ($c$-index; concordance probability, Somers' $D_{xy}$ rank correlation) is not a valid objective for optimization. It is fooled by a terribly miscalibrated model and is inefficient. Maximum likelihood estimation exists for a reason: optimizing the log likelihood function results in optimality properties of the estimators.
And don't scale indicator variables. This adds confusion to the interpretation of coefficients.
Don't rank features unless you accompany this with bootstrap confidence intervals for the ranks. You'll find that variable importance measures are volatile. The data do not have sufficient information to tell you which features of the data are most important. This is even more true when predictors are correlated.
answered Dec 12 '18 at 14:33
Frank HarrellFrank Harrell
54.6k3106239
54.6k3106239
2
Could you possibly talk a bit more about this part: "The data do not have sufficient information to tell you which features of the data are most important.". I always thought when 2 variables are z-transformed one can say a change in x for 1 standard-dev leads to a change of b(x) standard-dev in y. Therefor i would interpret the variable with the larger Beta as more influential on y than others. It would be really helpful for me if you could add a few words and/or sources. Thanks in advance.
– TinglTanglBob
Dec 12 '18 at 16:02
Thank you Frank for your help. Noted, I will not scale indicator variables and will calculate the bootstrap confidence intervals. Why is therefore AUROC commonly used if it is inefficient? Thanks again!
– shzt
Dec 13 '18 at 9:35
A good question. Lots of bad ideas put into use in the world. I think people find the concordance probability to be the most interpretable measure of predictive discrimination, and think it should be favored over proper scoring rules for that reason.
– Frank Harrell
Dec 13 '18 at 12:40
add a comment |
2
Could you possibly talk a bit more about this part: "The data do not have sufficient information to tell you which features of the data are most important.". I always thought when 2 variables are z-transformed one can say a change in x for 1 standard-dev leads to a change of b(x) standard-dev in y. Therefor i would interpret the variable with the larger Beta as more influential on y than others. It would be really helpful for me if you could add a few words and/or sources. Thanks in advance.
– TinglTanglBob
Dec 12 '18 at 16:02
Thank you Frank for your help. Noted, I will not scale indicator variables and will calculate the bootstrap confidence intervals. Why is therefore AUROC commonly used if it is inefficient? Thanks again!
– shzt
Dec 13 '18 at 9:35
A good question. Lots of bad ideas put into use in the world. I think people find the concordance probability to be the most interpretable measure of predictive discrimination, and think it should be favored over proper scoring rules for that reason.
– Frank Harrell
Dec 13 '18 at 12:40
2
2
Could you possibly talk a bit more about this part: "The data do not have sufficient information to tell you which features of the data are most important.". I always thought when 2 variables are z-transformed one can say a change in x for 1 standard-dev leads to a change of b(x) standard-dev in y. Therefor i would interpret the variable with the larger Beta as more influential on y than others. It would be really helpful for me if you could add a few words and/or sources. Thanks in advance.
– TinglTanglBob
Dec 12 '18 at 16:02
Could you possibly talk a bit more about this part: "The data do not have sufficient information to tell you which features of the data are most important.". I always thought when 2 variables are z-transformed one can say a change in x for 1 standard-dev leads to a change of b(x) standard-dev in y. Therefor i would interpret the variable with the larger Beta as more influential on y than others. It would be really helpful for me if you could add a few words and/or sources. Thanks in advance.
– TinglTanglBob
Dec 12 '18 at 16:02
Thank you Frank for your help. Noted, I will not scale indicator variables and will calculate the bootstrap confidence intervals. Why is therefore AUROC commonly used if it is inefficient? Thanks again!
– shzt
Dec 13 '18 at 9:35
Thank you Frank for your help. Noted, I will not scale indicator variables and will calculate the bootstrap confidence intervals. Why is therefore AUROC commonly used if it is inefficient? Thanks again!
– shzt
Dec 13 '18 at 9:35
A good question. Lots of bad ideas put into use in the world. I think people find the concordance probability to be the most interpretable measure of predictive discrimination, and think it should be favored over proper scoring rules for that reason.
– Frank Harrell
Dec 13 '18 at 12:40
A good question. Lots of bad ideas put into use in the world. I think people find the concordance probability to be the most interpretable measure of predictive discrimination, and think it should be favored over proper scoring rules for that reason.
– Frank Harrell
Dec 13 '18 at 12:40
add a comment |
Thanks for contributing an answer to Cross Validated!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f381643%2fscale-dummy-variables-in-logistic-regression%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown