Was the transatlantic crossing for Concorde too short to reach optimal cruising altitude?











up vote
23
down vote

favorite
1












When listening to Gander/Shannon ATC on shortwave, you could hear Concorde communicate its planned flight levels at longitudes from 20 West till 50 West. What I remember is that it would continue climbing to, say, flight level 570 at 30 West and then descent. So, it seems that it never reached cruising altitude, it would climb until halfway on the Atlantic and then start to descent again.










share|improve this question




























    up vote
    23
    down vote

    favorite
    1












    When listening to Gander/Shannon ATC on shortwave, you could hear Concorde communicate its planned flight levels at longitudes from 20 West till 50 West. What I remember is that it would continue climbing to, say, flight level 570 at 30 West and then descent. So, it seems that it never reached cruising altitude, it would climb until halfway on the Atlantic and then start to descent again.










    share|improve this question


























      up vote
      23
      down vote

      favorite
      1









      up vote
      23
      down vote

      favorite
      1






      1





      When listening to Gander/Shannon ATC on shortwave, you could hear Concorde communicate its planned flight levels at longitudes from 20 West till 50 West. What I remember is that it would continue climbing to, say, flight level 570 at 30 West and then descent. So, it seems that it never reached cruising altitude, it would climb until halfway on the Atlantic and then start to descent again.










      share|improve this question















      When listening to Gander/Shannon ATC on shortwave, you could hear Concorde communicate its planned flight levels at longitudes from 20 West till 50 West. What I remember is that it would continue climbing to, say, flight level 570 at 30 West and then descent. So, it seems that it never reached cruising altitude, it would climb until halfway on the Atlantic and then start to descent again.







      altitude concorde






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Nov 13 at 21:44









      Ari Brodsky

      1093




      1093










      asked Nov 13 at 18:25









      Count Iblis

      21626




      21626






















          3 Answers
          3






          active

          oldest

          votes

















          up vote
          40
          down vote













          The simple answer is that the Concorde had no single assigned altitude, it was allowed to climb freely above ~FL450; this is discussed in depth in episode 166 – Flying the Concorde (worth the listen as it answers just about every Concorde question!). As @pilothead alludes to in their answer it climbed as it burned fuel but the aircraft never actually initiated a climb, it simply drifted up as it burned fuel and became lighter.



          Also discussed in the episode is the complex approach and departure procedure. Due to the fuel burn schedule the Concorde did not really have the ability to hold for more than a single lap in a holding pattern or do a stepped climb with some route adjustments like many airliners. They had a special departure procedure that was more or less runway to cruise with no interruptions and a similar descent option. So the flight was effectively a climb to cruise block then a glide down right to landing. Depending on the wind and conditions of any given day as well as the load on board, the cruise altitude could vary greatly.






          share|improve this answer



















          • 24




            The Concorde cruise climb would actually be the most efficient cruise procedure for all aircraft, anyway, but no other aircraft are allowed this due to traffic density. Normal aircraft approximate this by step climbing a couple of thousand feet every few hours. Concorde was very much alone at her altitude, hence a gradual climb didn’t risk any loss of separation with other traffic.
            – Cpt Reynolds
            Nov 13 at 19:45






          • 4




            Link for what @CptReynolds said: Step Climb. As the aircraft changes weight the efficient altitude changes. Apparently conventional aircraft used to cruise climb, but since the skies are pretty busy now isn't no longer an option. Interesting read.
            – Nathan Cooper
            Nov 14 at 10:53




















          up vote
          20
          down vote













          Concorde had a 10,000fpm climb and a max altitude of 60,000ft, so time to climb was not a problem. It had an optimum cruise altitude that varied with weight, so as it burned fuel it climbed higher to stay on the optimum.



          There were no other aircraft operating at those altitudes, so it would get clearances to climb 15,000ft at a time and would cruise climb throughout the trip until descent to destination was required.






          share|improve this answer





















          • Is there a link to graph/formula of optimum cruise altitude vs weight?
            – smci
            Nov 14 at 5:38










          • @smci It is more complex than just weight. I found a repository of the flight manuals but it is thousands of pages. If you are interested avialogs.com/index.php/en/aircraft/europe-and-consortiums/…
            – Pilothead
            Nov 14 at 20:01










          • can you just tell us the first-order approximation to the relationship between optimum cruise altitude vs weight?
            – smci
            Nov 15 at 11:54


















          up vote
          4
          down vote













          Amazing how we humans skew altitude and distance. 60,000 feet up is 12 miles. Transatlantic 2400 miles.
          The climb would be a gradient of 12 miles vertical/1200 miles horizontal x 100% = 1.0%



          I daresay the Concorde could climb a bit faster.
          A 1.0% gradient would be barely noticeable in an automobile.



          Miles units cancel, answer expressed in %. Good job nitpickers!






          share|improve this answer



















          • 13




            This answer does not have any sources (and doesn't make any strong claims at all) and may be more fitting as a comment.
            – Jules
            Nov 13 at 20:40






          • 1




            On the other hand, a freight train climbing that same grade (12 miles in 1200) could be handled by normal locomotive allocation if they didn't mind it going slower than normal. If speed is a factor, e.g. Fast container train, it will get helper units added mid-train simply to keep speed up.
            – Harper
            Nov 13 at 23:19








          • 4




            Math nitpick: it should be "x 100%" (="x 1"), not just "x 100".
            – amI
            Nov 14 at 4:03






          • 3




            @RobertDiGiovanni User aml is right though. 12/1200 * 100 = 1200/1200 = 1 and 1% = 1/100, from which follows that LHS and RHS of your post's equation can't be equivalent.
            – Inarion
            Nov 14 at 12:38








          • 7




            Better nitpick: There should be no x 100. 12/1200 is 1%. 12/1200 x 100 is 100%.
            – pipe
            Nov 14 at 12:39











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "528"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














           

          draft saved


          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2faviation.stackexchange.com%2fquestions%2f57058%2fwas-the-transatlantic-crossing-for-concorde-too-short-to-reach-optimal-cruising%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          3 Answers
          3






          active

          oldest

          votes








          3 Answers
          3






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          40
          down vote













          The simple answer is that the Concorde had no single assigned altitude, it was allowed to climb freely above ~FL450; this is discussed in depth in episode 166 – Flying the Concorde (worth the listen as it answers just about every Concorde question!). As @pilothead alludes to in their answer it climbed as it burned fuel but the aircraft never actually initiated a climb, it simply drifted up as it burned fuel and became lighter.



          Also discussed in the episode is the complex approach and departure procedure. Due to the fuel burn schedule the Concorde did not really have the ability to hold for more than a single lap in a holding pattern or do a stepped climb with some route adjustments like many airliners. They had a special departure procedure that was more or less runway to cruise with no interruptions and a similar descent option. So the flight was effectively a climb to cruise block then a glide down right to landing. Depending on the wind and conditions of any given day as well as the load on board, the cruise altitude could vary greatly.






          share|improve this answer



















          • 24




            The Concorde cruise climb would actually be the most efficient cruise procedure for all aircraft, anyway, but no other aircraft are allowed this due to traffic density. Normal aircraft approximate this by step climbing a couple of thousand feet every few hours. Concorde was very much alone at her altitude, hence a gradual climb didn’t risk any loss of separation with other traffic.
            – Cpt Reynolds
            Nov 13 at 19:45






          • 4




            Link for what @CptReynolds said: Step Climb. As the aircraft changes weight the efficient altitude changes. Apparently conventional aircraft used to cruise climb, but since the skies are pretty busy now isn't no longer an option. Interesting read.
            – Nathan Cooper
            Nov 14 at 10:53

















          up vote
          40
          down vote













          The simple answer is that the Concorde had no single assigned altitude, it was allowed to climb freely above ~FL450; this is discussed in depth in episode 166 – Flying the Concorde (worth the listen as it answers just about every Concorde question!). As @pilothead alludes to in their answer it climbed as it burned fuel but the aircraft never actually initiated a climb, it simply drifted up as it burned fuel and became lighter.



          Also discussed in the episode is the complex approach and departure procedure. Due to the fuel burn schedule the Concorde did not really have the ability to hold for more than a single lap in a holding pattern or do a stepped climb with some route adjustments like many airliners. They had a special departure procedure that was more or less runway to cruise with no interruptions and a similar descent option. So the flight was effectively a climb to cruise block then a glide down right to landing. Depending on the wind and conditions of any given day as well as the load on board, the cruise altitude could vary greatly.






          share|improve this answer



















          • 24




            The Concorde cruise climb would actually be the most efficient cruise procedure for all aircraft, anyway, but no other aircraft are allowed this due to traffic density. Normal aircraft approximate this by step climbing a couple of thousand feet every few hours. Concorde was very much alone at her altitude, hence a gradual climb didn’t risk any loss of separation with other traffic.
            – Cpt Reynolds
            Nov 13 at 19:45






          • 4




            Link for what @CptReynolds said: Step Climb. As the aircraft changes weight the efficient altitude changes. Apparently conventional aircraft used to cruise climb, but since the skies are pretty busy now isn't no longer an option. Interesting read.
            – Nathan Cooper
            Nov 14 at 10:53















          up vote
          40
          down vote










          up vote
          40
          down vote









          The simple answer is that the Concorde had no single assigned altitude, it was allowed to climb freely above ~FL450; this is discussed in depth in episode 166 – Flying the Concorde (worth the listen as it answers just about every Concorde question!). As @pilothead alludes to in their answer it climbed as it burned fuel but the aircraft never actually initiated a climb, it simply drifted up as it burned fuel and became lighter.



          Also discussed in the episode is the complex approach and departure procedure. Due to the fuel burn schedule the Concorde did not really have the ability to hold for more than a single lap in a holding pattern or do a stepped climb with some route adjustments like many airliners. They had a special departure procedure that was more or less runway to cruise with no interruptions and a similar descent option. So the flight was effectively a climb to cruise block then a glide down right to landing. Depending on the wind and conditions of any given day as well as the load on board, the cruise altitude could vary greatly.






          share|improve this answer














          The simple answer is that the Concorde had no single assigned altitude, it was allowed to climb freely above ~FL450; this is discussed in depth in episode 166 – Flying the Concorde (worth the listen as it answers just about every Concorde question!). As @pilothead alludes to in their answer it climbed as it burned fuel but the aircraft never actually initiated a climb, it simply drifted up as it burned fuel and became lighter.



          Also discussed in the episode is the complex approach and departure procedure. Due to the fuel burn schedule the Concorde did not really have the ability to hold for more than a single lap in a holding pattern or do a stepped climb with some route adjustments like many airliners. They had a special departure procedure that was more or less runway to cruise with no interruptions and a similar descent option. So the flight was effectively a climb to cruise block then a glide down right to landing. Depending on the wind and conditions of any given day as well as the load on board, the cruise altitude could vary greatly.







          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited Nov 13 at 21:46









          FreeMan

          6,734651118




          6,734651118










          answered Nov 13 at 19:17









          Dave

          59.8k4108218




          59.8k4108218








          • 24




            The Concorde cruise climb would actually be the most efficient cruise procedure for all aircraft, anyway, but no other aircraft are allowed this due to traffic density. Normal aircraft approximate this by step climbing a couple of thousand feet every few hours. Concorde was very much alone at her altitude, hence a gradual climb didn’t risk any loss of separation with other traffic.
            – Cpt Reynolds
            Nov 13 at 19:45






          • 4




            Link for what @CptReynolds said: Step Climb. As the aircraft changes weight the efficient altitude changes. Apparently conventional aircraft used to cruise climb, but since the skies are pretty busy now isn't no longer an option. Interesting read.
            – Nathan Cooper
            Nov 14 at 10:53
















          • 24




            The Concorde cruise climb would actually be the most efficient cruise procedure for all aircraft, anyway, but no other aircraft are allowed this due to traffic density. Normal aircraft approximate this by step climbing a couple of thousand feet every few hours. Concorde was very much alone at her altitude, hence a gradual climb didn’t risk any loss of separation with other traffic.
            – Cpt Reynolds
            Nov 13 at 19:45






          • 4




            Link for what @CptReynolds said: Step Climb. As the aircraft changes weight the efficient altitude changes. Apparently conventional aircraft used to cruise climb, but since the skies are pretty busy now isn't no longer an option. Interesting read.
            – Nathan Cooper
            Nov 14 at 10:53










          24




          24




          The Concorde cruise climb would actually be the most efficient cruise procedure for all aircraft, anyway, but no other aircraft are allowed this due to traffic density. Normal aircraft approximate this by step climbing a couple of thousand feet every few hours. Concorde was very much alone at her altitude, hence a gradual climb didn’t risk any loss of separation with other traffic.
          – Cpt Reynolds
          Nov 13 at 19:45




          The Concorde cruise climb would actually be the most efficient cruise procedure for all aircraft, anyway, but no other aircraft are allowed this due to traffic density. Normal aircraft approximate this by step climbing a couple of thousand feet every few hours. Concorde was very much alone at her altitude, hence a gradual climb didn’t risk any loss of separation with other traffic.
          – Cpt Reynolds
          Nov 13 at 19:45




          4




          4




          Link for what @CptReynolds said: Step Climb. As the aircraft changes weight the efficient altitude changes. Apparently conventional aircraft used to cruise climb, but since the skies are pretty busy now isn't no longer an option. Interesting read.
          – Nathan Cooper
          Nov 14 at 10:53






          Link for what @CptReynolds said: Step Climb. As the aircraft changes weight the efficient altitude changes. Apparently conventional aircraft used to cruise climb, but since the skies are pretty busy now isn't no longer an option. Interesting read.
          – Nathan Cooper
          Nov 14 at 10:53












          up vote
          20
          down vote













          Concorde had a 10,000fpm climb and a max altitude of 60,000ft, so time to climb was not a problem. It had an optimum cruise altitude that varied with weight, so as it burned fuel it climbed higher to stay on the optimum.



          There were no other aircraft operating at those altitudes, so it would get clearances to climb 15,000ft at a time and would cruise climb throughout the trip until descent to destination was required.






          share|improve this answer





















          • Is there a link to graph/formula of optimum cruise altitude vs weight?
            – smci
            Nov 14 at 5:38










          • @smci It is more complex than just weight. I found a repository of the flight manuals but it is thousands of pages. If you are interested avialogs.com/index.php/en/aircraft/europe-and-consortiums/…
            – Pilothead
            Nov 14 at 20:01










          • can you just tell us the first-order approximation to the relationship between optimum cruise altitude vs weight?
            – smci
            Nov 15 at 11:54















          up vote
          20
          down vote













          Concorde had a 10,000fpm climb and a max altitude of 60,000ft, so time to climb was not a problem. It had an optimum cruise altitude that varied with weight, so as it burned fuel it climbed higher to stay on the optimum.



          There were no other aircraft operating at those altitudes, so it would get clearances to climb 15,000ft at a time and would cruise climb throughout the trip until descent to destination was required.






          share|improve this answer





















          • Is there a link to graph/formula of optimum cruise altitude vs weight?
            – smci
            Nov 14 at 5:38










          • @smci It is more complex than just weight. I found a repository of the flight manuals but it is thousands of pages. If you are interested avialogs.com/index.php/en/aircraft/europe-and-consortiums/…
            – Pilothead
            Nov 14 at 20:01










          • can you just tell us the first-order approximation to the relationship between optimum cruise altitude vs weight?
            – smci
            Nov 15 at 11:54













          up vote
          20
          down vote










          up vote
          20
          down vote









          Concorde had a 10,000fpm climb and a max altitude of 60,000ft, so time to climb was not a problem. It had an optimum cruise altitude that varied with weight, so as it burned fuel it climbed higher to stay on the optimum.



          There were no other aircraft operating at those altitudes, so it would get clearances to climb 15,000ft at a time and would cruise climb throughout the trip until descent to destination was required.






          share|improve this answer












          Concorde had a 10,000fpm climb and a max altitude of 60,000ft, so time to climb was not a problem. It had an optimum cruise altitude that varied with weight, so as it burned fuel it climbed higher to stay on the optimum.



          There were no other aircraft operating at those altitudes, so it would get clearances to climb 15,000ft at a time and would cruise climb throughout the trip until descent to destination was required.







          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered Nov 13 at 19:04









          Pilothead

          8,99322458




          8,99322458












          • Is there a link to graph/formula of optimum cruise altitude vs weight?
            – smci
            Nov 14 at 5:38










          • @smci It is more complex than just weight. I found a repository of the flight manuals but it is thousands of pages. If you are interested avialogs.com/index.php/en/aircraft/europe-and-consortiums/…
            – Pilothead
            Nov 14 at 20:01










          • can you just tell us the first-order approximation to the relationship between optimum cruise altitude vs weight?
            – smci
            Nov 15 at 11:54


















          • Is there a link to graph/formula of optimum cruise altitude vs weight?
            – smci
            Nov 14 at 5:38










          • @smci It is more complex than just weight. I found a repository of the flight manuals but it is thousands of pages. If you are interested avialogs.com/index.php/en/aircraft/europe-and-consortiums/…
            – Pilothead
            Nov 14 at 20:01










          • can you just tell us the first-order approximation to the relationship between optimum cruise altitude vs weight?
            – smci
            Nov 15 at 11:54
















          Is there a link to graph/formula of optimum cruise altitude vs weight?
          – smci
          Nov 14 at 5:38




          Is there a link to graph/formula of optimum cruise altitude vs weight?
          – smci
          Nov 14 at 5:38












          @smci It is more complex than just weight. I found a repository of the flight manuals but it is thousands of pages. If you are interested avialogs.com/index.php/en/aircraft/europe-and-consortiums/…
          – Pilothead
          Nov 14 at 20:01




          @smci It is more complex than just weight. I found a repository of the flight manuals but it is thousands of pages. If you are interested avialogs.com/index.php/en/aircraft/europe-and-consortiums/…
          – Pilothead
          Nov 14 at 20:01












          can you just tell us the first-order approximation to the relationship between optimum cruise altitude vs weight?
          – smci
          Nov 15 at 11:54




          can you just tell us the first-order approximation to the relationship between optimum cruise altitude vs weight?
          – smci
          Nov 15 at 11:54










          up vote
          4
          down vote













          Amazing how we humans skew altitude and distance. 60,000 feet up is 12 miles. Transatlantic 2400 miles.
          The climb would be a gradient of 12 miles vertical/1200 miles horizontal x 100% = 1.0%



          I daresay the Concorde could climb a bit faster.
          A 1.0% gradient would be barely noticeable in an automobile.



          Miles units cancel, answer expressed in %. Good job nitpickers!






          share|improve this answer



















          • 13




            This answer does not have any sources (and doesn't make any strong claims at all) and may be more fitting as a comment.
            – Jules
            Nov 13 at 20:40






          • 1




            On the other hand, a freight train climbing that same grade (12 miles in 1200) could be handled by normal locomotive allocation if they didn't mind it going slower than normal. If speed is a factor, e.g. Fast container train, it will get helper units added mid-train simply to keep speed up.
            – Harper
            Nov 13 at 23:19








          • 4




            Math nitpick: it should be "x 100%" (="x 1"), not just "x 100".
            – amI
            Nov 14 at 4:03






          • 3




            @RobertDiGiovanni User aml is right though. 12/1200 * 100 = 1200/1200 = 1 and 1% = 1/100, from which follows that LHS and RHS of your post's equation can't be equivalent.
            – Inarion
            Nov 14 at 12:38








          • 7




            Better nitpick: There should be no x 100. 12/1200 is 1%. 12/1200 x 100 is 100%.
            – pipe
            Nov 14 at 12:39















          up vote
          4
          down vote













          Amazing how we humans skew altitude and distance. 60,000 feet up is 12 miles. Transatlantic 2400 miles.
          The climb would be a gradient of 12 miles vertical/1200 miles horizontal x 100% = 1.0%



          I daresay the Concorde could climb a bit faster.
          A 1.0% gradient would be barely noticeable in an automobile.



          Miles units cancel, answer expressed in %. Good job nitpickers!






          share|improve this answer



















          • 13




            This answer does not have any sources (and doesn't make any strong claims at all) and may be more fitting as a comment.
            – Jules
            Nov 13 at 20:40






          • 1




            On the other hand, a freight train climbing that same grade (12 miles in 1200) could be handled by normal locomotive allocation if they didn't mind it going slower than normal. If speed is a factor, e.g. Fast container train, it will get helper units added mid-train simply to keep speed up.
            – Harper
            Nov 13 at 23:19








          • 4




            Math nitpick: it should be "x 100%" (="x 1"), not just "x 100".
            – amI
            Nov 14 at 4:03






          • 3




            @RobertDiGiovanni User aml is right though. 12/1200 * 100 = 1200/1200 = 1 and 1% = 1/100, from which follows that LHS and RHS of your post's equation can't be equivalent.
            – Inarion
            Nov 14 at 12:38








          • 7




            Better nitpick: There should be no x 100. 12/1200 is 1%. 12/1200 x 100 is 100%.
            – pipe
            Nov 14 at 12:39













          up vote
          4
          down vote










          up vote
          4
          down vote









          Amazing how we humans skew altitude and distance. 60,000 feet up is 12 miles. Transatlantic 2400 miles.
          The climb would be a gradient of 12 miles vertical/1200 miles horizontal x 100% = 1.0%



          I daresay the Concorde could climb a bit faster.
          A 1.0% gradient would be barely noticeable in an automobile.



          Miles units cancel, answer expressed in %. Good job nitpickers!






          share|improve this answer














          Amazing how we humans skew altitude and distance. 60,000 feet up is 12 miles. Transatlantic 2400 miles.
          The climb would be a gradient of 12 miles vertical/1200 miles horizontal x 100% = 1.0%



          I daresay the Concorde could climb a bit faster.
          A 1.0% gradient would be barely noticeable in an automobile.



          Miles units cancel, answer expressed in %. Good job nitpickers!







          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited Nov 15 at 7:59

























          answered Nov 13 at 19:44









          Robert DiGiovanni

          833210




          833210








          • 13




            This answer does not have any sources (and doesn't make any strong claims at all) and may be more fitting as a comment.
            – Jules
            Nov 13 at 20:40






          • 1




            On the other hand, a freight train climbing that same grade (12 miles in 1200) could be handled by normal locomotive allocation if they didn't mind it going slower than normal. If speed is a factor, e.g. Fast container train, it will get helper units added mid-train simply to keep speed up.
            – Harper
            Nov 13 at 23:19








          • 4




            Math nitpick: it should be "x 100%" (="x 1"), not just "x 100".
            – amI
            Nov 14 at 4:03






          • 3




            @RobertDiGiovanni User aml is right though. 12/1200 * 100 = 1200/1200 = 1 and 1% = 1/100, from which follows that LHS and RHS of your post's equation can't be equivalent.
            – Inarion
            Nov 14 at 12:38








          • 7




            Better nitpick: There should be no x 100. 12/1200 is 1%. 12/1200 x 100 is 100%.
            – pipe
            Nov 14 at 12:39














          • 13




            This answer does not have any sources (and doesn't make any strong claims at all) and may be more fitting as a comment.
            – Jules
            Nov 13 at 20:40






          • 1




            On the other hand, a freight train climbing that same grade (12 miles in 1200) could be handled by normal locomotive allocation if they didn't mind it going slower than normal. If speed is a factor, e.g. Fast container train, it will get helper units added mid-train simply to keep speed up.
            – Harper
            Nov 13 at 23:19








          • 4




            Math nitpick: it should be "x 100%" (="x 1"), not just "x 100".
            – amI
            Nov 14 at 4:03






          • 3




            @RobertDiGiovanni User aml is right though. 12/1200 * 100 = 1200/1200 = 1 and 1% = 1/100, from which follows that LHS and RHS of your post's equation can't be equivalent.
            – Inarion
            Nov 14 at 12:38








          • 7




            Better nitpick: There should be no x 100. 12/1200 is 1%. 12/1200 x 100 is 100%.
            – pipe
            Nov 14 at 12:39








          13




          13




          This answer does not have any sources (and doesn't make any strong claims at all) and may be more fitting as a comment.
          – Jules
          Nov 13 at 20:40




          This answer does not have any sources (and doesn't make any strong claims at all) and may be more fitting as a comment.
          – Jules
          Nov 13 at 20:40




          1




          1




          On the other hand, a freight train climbing that same grade (12 miles in 1200) could be handled by normal locomotive allocation if they didn't mind it going slower than normal. If speed is a factor, e.g. Fast container train, it will get helper units added mid-train simply to keep speed up.
          – Harper
          Nov 13 at 23:19






          On the other hand, a freight train climbing that same grade (12 miles in 1200) could be handled by normal locomotive allocation if they didn't mind it going slower than normal. If speed is a factor, e.g. Fast container train, it will get helper units added mid-train simply to keep speed up.
          – Harper
          Nov 13 at 23:19






          4




          4




          Math nitpick: it should be "x 100%" (="x 1"), not just "x 100".
          – amI
          Nov 14 at 4:03




          Math nitpick: it should be "x 100%" (="x 1"), not just "x 100".
          – amI
          Nov 14 at 4:03




          3




          3




          @RobertDiGiovanni User aml is right though. 12/1200 * 100 = 1200/1200 = 1 and 1% = 1/100, from which follows that LHS and RHS of your post's equation can't be equivalent.
          – Inarion
          Nov 14 at 12:38






          @RobertDiGiovanni User aml is right though. 12/1200 * 100 = 1200/1200 = 1 and 1% = 1/100, from which follows that LHS and RHS of your post's equation can't be equivalent.
          – Inarion
          Nov 14 at 12:38






          7




          7




          Better nitpick: There should be no x 100. 12/1200 is 1%. 12/1200 x 100 is 100%.
          – pipe
          Nov 14 at 12:39




          Better nitpick: There should be no x 100. 12/1200 is 1%. 12/1200 x 100 is 100%.
          – pipe
          Nov 14 at 12:39


















           

          draft saved


          draft discarded



















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2faviation.stackexchange.com%2fquestions%2f57058%2fwas-the-transatlantic-crossing-for-concorde-too-short-to-reach-optimal-cruising%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Сан-Квентин

          8-я гвардейская общевойсковая армия

          Алькесар