Show that sequence is a Cauchy sequence












2












$begingroup$


Prove that given sequence $$langle f_nrangle =1-frac{1}{2}+frac{1}{3}-frac{1}{4}+.....+frac{(-1)^{n-1}}{n}$$



is a Cauchy sequence



My attempt :
$|f_{n}-f_{m}|=Biggl|dfrac{(-1)^{m}}{m+1}+dfrac{(-1)^{m+1}}{m+2}cdotsdots+dfrac{(-1)^{n-1}}{n}Biggr|$



using $ m+1>m implies dfrac{1}{m+1}<dfrac{1}{m} $



$|f_{n}-f_{m}|le dfrac{1}{m}+dfrac{1}{m}+dfrac{1}{m}cdotscdotsdfrac{1}{m}$



$|f_{n}-f_{m}|ledfrac{n-m}{m}$



I don't know if I am proceeding correctly or if I am, how to proceed further, any hint would be really helpful .










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Well, the limit of the sequence because of Leibniz' criterion.
    $endgroup$
    – egreg
    5 hours ago






  • 3




    $begingroup$
    Hint: a convergent sequence is Cauchy.
    $endgroup$
    – Bernard
    5 hours ago
















2












$begingroup$


Prove that given sequence $$langle f_nrangle =1-frac{1}{2}+frac{1}{3}-frac{1}{4}+.....+frac{(-1)^{n-1}}{n}$$



is a Cauchy sequence



My attempt :
$|f_{n}-f_{m}|=Biggl|dfrac{(-1)^{m}}{m+1}+dfrac{(-1)^{m+1}}{m+2}cdotsdots+dfrac{(-1)^{n-1}}{n}Biggr|$



using $ m+1>m implies dfrac{1}{m+1}<dfrac{1}{m} $



$|f_{n}-f_{m}|le dfrac{1}{m}+dfrac{1}{m}+dfrac{1}{m}cdotscdotsdfrac{1}{m}$



$|f_{n}-f_{m}|ledfrac{n-m}{m}$



I don't know if I am proceeding correctly or if I am, how to proceed further, any hint would be really helpful .










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Well, the limit of the sequence because of Leibniz' criterion.
    $endgroup$
    – egreg
    5 hours ago






  • 3




    $begingroup$
    Hint: a convergent sequence is Cauchy.
    $endgroup$
    – Bernard
    5 hours ago














2












2








2





$begingroup$


Prove that given sequence $$langle f_nrangle =1-frac{1}{2}+frac{1}{3}-frac{1}{4}+.....+frac{(-1)^{n-1}}{n}$$



is a Cauchy sequence



My attempt :
$|f_{n}-f_{m}|=Biggl|dfrac{(-1)^{m}}{m+1}+dfrac{(-1)^{m+1}}{m+2}cdotsdots+dfrac{(-1)^{n-1}}{n}Biggr|$



using $ m+1>m implies dfrac{1}{m+1}<dfrac{1}{m} $



$|f_{n}-f_{m}|le dfrac{1}{m}+dfrac{1}{m}+dfrac{1}{m}cdotscdotsdfrac{1}{m}$



$|f_{n}-f_{m}|ledfrac{n-m}{m}$



I don't know if I am proceeding correctly or if I am, how to proceed further, any hint would be really helpful .










share|cite|improve this question











$endgroup$




Prove that given sequence $$langle f_nrangle =1-frac{1}{2}+frac{1}{3}-frac{1}{4}+.....+frac{(-1)^{n-1}}{n}$$



is a Cauchy sequence



My attempt :
$|f_{n}-f_{m}|=Biggl|dfrac{(-1)^{m}}{m+1}+dfrac{(-1)^{m+1}}{m+2}cdotsdots+dfrac{(-1)^{n-1}}{n}Biggr|$



using $ m+1>m implies dfrac{1}{m+1}<dfrac{1}{m} $



$|f_{n}-f_{m}|le dfrac{1}{m}+dfrac{1}{m}+dfrac{1}{m}cdotscdotsdfrac{1}{m}$



$|f_{n}-f_{m}|ledfrac{n-m}{m}$



I don't know if I am proceeding correctly or if I am, how to proceed further, any hint would be really helpful .







sequences-and-series cauchy-sequences






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 5 hours ago









Bernard

121k740116




121k740116










asked 5 hours ago









kira0705kira0705

1167




1167








  • 1




    $begingroup$
    Well, the limit of the sequence because of Leibniz' criterion.
    $endgroup$
    – egreg
    5 hours ago






  • 3




    $begingroup$
    Hint: a convergent sequence is Cauchy.
    $endgroup$
    – Bernard
    5 hours ago














  • 1




    $begingroup$
    Well, the limit of the sequence because of Leibniz' criterion.
    $endgroup$
    – egreg
    5 hours ago






  • 3




    $begingroup$
    Hint: a convergent sequence is Cauchy.
    $endgroup$
    – Bernard
    5 hours ago








1




1




$begingroup$
Well, the limit of the sequence because of Leibniz' criterion.
$endgroup$
– egreg
5 hours ago




$begingroup$
Well, the limit of the sequence because of Leibniz' criterion.
$endgroup$
– egreg
5 hours ago




3




3




$begingroup$
Hint: a convergent sequence is Cauchy.
$endgroup$
– Bernard
5 hours ago




$begingroup$
Hint: a convergent sequence is Cauchy.
$endgroup$
– Bernard
5 hours ago










3 Answers
3






active

oldest

votes


















2












$begingroup$

If you ignore the signs of the terms,
the result diverges.
So you can't do that.



$f_n
=sum_{k=1}^n dfrac{(-1)^k}{k}
$

so,
if $n > m$,
$f_n-f_m
=sum_{k=m+1}^n dfrac{(-1)^k}{k}
=sum_{k=1}^{n-m} dfrac{(-1)^{k+m}}{k+m}
=(-1)^msum_{k=1}^{n-m} dfrac{(-1)^{k}}{k+m}
$
.



If
$n-m$ is even,
so $n-m = 2j$,
then



$begin{array}\
f_n-f_m
&=(-1)^msum_{k=1}^{2j} dfrac{(-1)^{k}}{k+m}\
&=(-1)^msum_{k=1}^{j} left(dfrac{(-1)^{2k-1}}{2k-1+m}+dfrac{(-1)^{2k}}{2k+m}right)\
&=(-1)^msum_{k=1}^{j} (-1)^{2k-1}left(dfrac{-1}{2k-1+m}+dfrac{1}{2k+m}right)\
&=(-1)^msum_{k=1}^{j} (-1)^{2k-1}left(dfrac{(2k-1+m)-(2k+m)}{(2k-1+m)(2k+m)}right)\
&=(-1)^{m+1}sum_{k=1}^{j} left(dfrac{-1}{(2k-1+m)(2k+m)}right)\
&=(-1)^{m}sum_{k=1}^{j} left(dfrac{1}{(2k-1+m)(2k+m)}right)\
text{so}\
|f_n-f_m|
&=sum_{k=1}^{j} left(dfrac{1}{(2k-1+m)(2k+m)}right)\
&=sum_{k=1}^{j}dfrac14 left(dfrac{1}{(k-frac12+frac{m}{2})(k+frac{m}{2})}right)\
&lt dfrac14sum_{k=1}^{j} left(dfrac{1}{(k-1+frac{m}{2})(k+frac{m}{2})}right)
quadtext{this is the sneaky part}\
&lt dfrac14sum_{k=1}^{j} left(dfrac{1}{k-1+frac{m}{2}}-dfrac{1}{k+frac{m}{2}}right)\
&= dfrac14 left(dfrac{1}{frac{m}{2}}-dfrac{1}{j+frac{m}{2}}right)\
&= dfrac12 left(dfrac{1}{m}-dfrac{1}{2j+m}right)\
&= dfrac12 left(dfrac{1}{m}-dfrac{1}{n}right)\
&< dfrac{1}{2m}\
&to 0 text{ as } m to infty\
end{array}
$



If $n-m$ is odd,
the sum changes
by at most $frac1{n}$
so it still goes to zero.






share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    Thank you for such an elaborate proof , not ignoring the signs was an important step indeed.
    $endgroup$
    – kira0705
    4 hours ago



















2












$begingroup$

Hint :



$$frac{1}{2n-1}-frac{1}{2n}=frac{1}{(2n-1)2n}leq frac{1}{(n-1)n}= frac{1}{n-1}-frac{1}{n} $$






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    Fix $epsilon > 0$, then for $n > frac{2}{sqrt{epsilon}}$ (So since both sides of the inequality are positive, $n^2 > frac{4}{epsilon} implies frac{epsilon}{2} > frac{2}{n^2}$), observe that $$|f_n - f_{n+1}| = |frac{1}{n} + frac{1}{n+1}| = |frac{n+2}{n(n+1)}| = frac{n+2}{n(n+1)} < frac{n+2}{n^2} =frac{1}{n} +frac{2}{n^2} < frac{1}{frac{2}{sqrt{epsilon}}} + frac{epsilon}{2} = frac{sqrt{epsilon}}{2} + frac{epsilon}{2} < frac{epsilon}{2} + frac{epsilon}{2} = epsilon $$






    share|cite|improve this answer











    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3123120%2fshow-that-sequence-is-a-cauchy-sequence%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      If you ignore the signs of the terms,
      the result diverges.
      So you can't do that.



      $f_n
      =sum_{k=1}^n dfrac{(-1)^k}{k}
      $

      so,
      if $n > m$,
      $f_n-f_m
      =sum_{k=m+1}^n dfrac{(-1)^k}{k}
      =sum_{k=1}^{n-m} dfrac{(-1)^{k+m}}{k+m}
      =(-1)^msum_{k=1}^{n-m} dfrac{(-1)^{k}}{k+m}
      $
      .



      If
      $n-m$ is even,
      so $n-m = 2j$,
      then



      $begin{array}\
      f_n-f_m
      &=(-1)^msum_{k=1}^{2j} dfrac{(-1)^{k}}{k+m}\
      &=(-1)^msum_{k=1}^{j} left(dfrac{(-1)^{2k-1}}{2k-1+m}+dfrac{(-1)^{2k}}{2k+m}right)\
      &=(-1)^msum_{k=1}^{j} (-1)^{2k-1}left(dfrac{-1}{2k-1+m}+dfrac{1}{2k+m}right)\
      &=(-1)^msum_{k=1}^{j} (-1)^{2k-1}left(dfrac{(2k-1+m)-(2k+m)}{(2k-1+m)(2k+m)}right)\
      &=(-1)^{m+1}sum_{k=1}^{j} left(dfrac{-1}{(2k-1+m)(2k+m)}right)\
      &=(-1)^{m}sum_{k=1}^{j} left(dfrac{1}{(2k-1+m)(2k+m)}right)\
      text{so}\
      |f_n-f_m|
      &=sum_{k=1}^{j} left(dfrac{1}{(2k-1+m)(2k+m)}right)\
      &=sum_{k=1}^{j}dfrac14 left(dfrac{1}{(k-frac12+frac{m}{2})(k+frac{m}{2})}right)\
      &lt dfrac14sum_{k=1}^{j} left(dfrac{1}{(k-1+frac{m}{2})(k+frac{m}{2})}right)
      quadtext{this is the sneaky part}\
      &lt dfrac14sum_{k=1}^{j} left(dfrac{1}{k-1+frac{m}{2}}-dfrac{1}{k+frac{m}{2}}right)\
      &= dfrac14 left(dfrac{1}{frac{m}{2}}-dfrac{1}{j+frac{m}{2}}right)\
      &= dfrac12 left(dfrac{1}{m}-dfrac{1}{2j+m}right)\
      &= dfrac12 left(dfrac{1}{m}-dfrac{1}{n}right)\
      &< dfrac{1}{2m}\
      &to 0 text{ as } m to infty\
      end{array}
      $



      If $n-m$ is odd,
      the sum changes
      by at most $frac1{n}$
      so it still goes to zero.






      share|cite|improve this answer









      $endgroup$









      • 1




        $begingroup$
        Thank you for such an elaborate proof , not ignoring the signs was an important step indeed.
        $endgroup$
        – kira0705
        4 hours ago
















      2












      $begingroup$

      If you ignore the signs of the terms,
      the result diverges.
      So you can't do that.



      $f_n
      =sum_{k=1}^n dfrac{(-1)^k}{k}
      $

      so,
      if $n > m$,
      $f_n-f_m
      =sum_{k=m+1}^n dfrac{(-1)^k}{k}
      =sum_{k=1}^{n-m} dfrac{(-1)^{k+m}}{k+m}
      =(-1)^msum_{k=1}^{n-m} dfrac{(-1)^{k}}{k+m}
      $
      .



      If
      $n-m$ is even,
      so $n-m = 2j$,
      then



      $begin{array}\
      f_n-f_m
      &=(-1)^msum_{k=1}^{2j} dfrac{(-1)^{k}}{k+m}\
      &=(-1)^msum_{k=1}^{j} left(dfrac{(-1)^{2k-1}}{2k-1+m}+dfrac{(-1)^{2k}}{2k+m}right)\
      &=(-1)^msum_{k=1}^{j} (-1)^{2k-1}left(dfrac{-1}{2k-1+m}+dfrac{1}{2k+m}right)\
      &=(-1)^msum_{k=1}^{j} (-1)^{2k-1}left(dfrac{(2k-1+m)-(2k+m)}{(2k-1+m)(2k+m)}right)\
      &=(-1)^{m+1}sum_{k=1}^{j} left(dfrac{-1}{(2k-1+m)(2k+m)}right)\
      &=(-1)^{m}sum_{k=1}^{j} left(dfrac{1}{(2k-1+m)(2k+m)}right)\
      text{so}\
      |f_n-f_m|
      &=sum_{k=1}^{j} left(dfrac{1}{(2k-1+m)(2k+m)}right)\
      &=sum_{k=1}^{j}dfrac14 left(dfrac{1}{(k-frac12+frac{m}{2})(k+frac{m}{2})}right)\
      &lt dfrac14sum_{k=1}^{j} left(dfrac{1}{(k-1+frac{m}{2})(k+frac{m}{2})}right)
      quadtext{this is the sneaky part}\
      &lt dfrac14sum_{k=1}^{j} left(dfrac{1}{k-1+frac{m}{2}}-dfrac{1}{k+frac{m}{2}}right)\
      &= dfrac14 left(dfrac{1}{frac{m}{2}}-dfrac{1}{j+frac{m}{2}}right)\
      &= dfrac12 left(dfrac{1}{m}-dfrac{1}{2j+m}right)\
      &= dfrac12 left(dfrac{1}{m}-dfrac{1}{n}right)\
      &< dfrac{1}{2m}\
      &to 0 text{ as } m to infty\
      end{array}
      $



      If $n-m$ is odd,
      the sum changes
      by at most $frac1{n}$
      so it still goes to zero.






      share|cite|improve this answer









      $endgroup$









      • 1




        $begingroup$
        Thank you for such an elaborate proof , not ignoring the signs was an important step indeed.
        $endgroup$
        – kira0705
        4 hours ago














      2












      2








      2





      $begingroup$

      If you ignore the signs of the terms,
      the result diverges.
      So you can't do that.



      $f_n
      =sum_{k=1}^n dfrac{(-1)^k}{k}
      $

      so,
      if $n > m$,
      $f_n-f_m
      =sum_{k=m+1}^n dfrac{(-1)^k}{k}
      =sum_{k=1}^{n-m} dfrac{(-1)^{k+m}}{k+m}
      =(-1)^msum_{k=1}^{n-m} dfrac{(-1)^{k}}{k+m}
      $
      .



      If
      $n-m$ is even,
      so $n-m = 2j$,
      then



      $begin{array}\
      f_n-f_m
      &=(-1)^msum_{k=1}^{2j} dfrac{(-1)^{k}}{k+m}\
      &=(-1)^msum_{k=1}^{j} left(dfrac{(-1)^{2k-1}}{2k-1+m}+dfrac{(-1)^{2k}}{2k+m}right)\
      &=(-1)^msum_{k=1}^{j} (-1)^{2k-1}left(dfrac{-1}{2k-1+m}+dfrac{1}{2k+m}right)\
      &=(-1)^msum_{k=1}^{j} (-1)^{2k-1}left(dfrac{(2k-1+m)-(2k+m)}{(2k-1+m)(2k+m)}right)\
      &=(-1)^{m+1}sum_{k=1}^{j} left(dfrac{-1}{(2k-1+m)(2k+m)}right)\
      &=(-1)^{m}sum_{k=1}^{j} left(dfrac{1}{(2k-1+m)(2k+m)}right)\
      text{so}\
      |f_n-f_m|
      &=sum_{k=1}^{j} left(dfrac{1}{(2k-1+m)(2k+m)}right)\
      &=sum_{k=1}^{j}dfrac14 left(dfrac{1}{(k-frac12+frac{m}{2})(k+frac{m}{2})}right)\
      &lt dfrac14sum_{k=1}^{j} left(dfrac{1}{(k-1+frac{m}{2})(k+frac{m}{2})}right)
      quadtext{this is the sneaky part}\
      &lt dfrac14sum_{k=1}^{j} left(dfrac{1}{k-1+frac{m}{2}}-dfrac{1}{k+frac{m}{2}}right)\
      &= dfrac14 left(dfrac{1}{frac{m}{2}}-dfrac{1}{j+frac{m}{2}}right)\
      &= dfrac12 left(dfrac{1}{m}-dfrac{1}{2j+m}right)\
      &= dfrac12 left(dfrac{1}{m}-dfrac{1}{n}right)\
      &< dfrac{1}{2m}\
      &to 0 text{ as } m to infty\
      end{array}
      $



      If $n-m$ is odd,
      the sum changes
      by at most $frac1{n}$
      so it still goes to zero.






      share|cite|improve this answer









      $endgroup$



      If you ignore the signs of the terms,
      the result diverges.
      So you can't do that.



      $f_n
      =sum_{k=1}^n dfrac{(-1)^k}{k}
      $

      so,
      if $n > m$,
      $f_n-f_m
      =sum_{k=m+1}^n dfrac{(-1)^k}{k}
      =sum_{k=1}^{n-m} dfrac{(-1)^{k+m}}{k+m}
      =(-1)^msum_{k=1}^{n-m} dfrac{(-1)^{k}}{k+m}
      $
      .



      If
      $n-m$ is even,
      so $n-m = 2j$,
      then



      $begin{array}\
      f_n-f_m
      &=(-1)^msum_{k=1}^{2j} dfrac{(-1)^{k}}{k+m}\
      &=(-1)^msum_{k=1}^{j} left(dfrac{(-1)^{2k-1}}{2k-1+m}+dfrac{(-1)^{2k}}{2k+m}right)\
      &=(-1)^msum_{k=1}^{j} (-1)^{2k-1}left(dfrac{-1}{2k-1+m}+dfrac{1}{2k+m}right)\
      &=(-1)^msum_{k=1}^{j} (-1)^{2k-1}left(dfrac{(2k-1+m)-(2k+m)}{(2k-1+m)(2k+m)}right)\
      &=(-1)^{m+1}sum_{k=1}^{j} left(dfrac{-1}{(2k-1+m)(2k+m)}right)\
      &=(-1)^{m}sum_{k=1}^{j} left(dfrac{1}{(2k-1+m)(2k+m)}right)\
      text{so}\
      |f_n-f_m|
      &=sum_{k=1}^{j} left(dfrac{1}{(2k-1+m)(2k+m)}right)\
      &=sum_{k=1}^{j}dfrac14 left(dfrac{1}{(k-frac12+frac{m}{2})(k+frac{m}{2})}right)\
      &lt dfrac14sum_{k=1}^{j} left(dfrac{1}{(k-1+frac{m}{2})(k+frac{m}{2})}right)
      quadtext{this is the sneaky part}\
      &lt dfrac14sum_{k=1}^{j} left(dfrac{1}{k-1+frac{m}{2}}-dfrac{1}{k+frac{m}{2}}right)\
      &= dfrac14 left(dfrac{1}{frac{m}{2}}-dfrac{1}{j+frac{m}{2}}right)\
      &= dfrac12 left(dfrac{1}{m}-dfrac{1}{2j+m}right)\
      &= dfrac12 left(dfrac{1}{m}-dfrac{1}{n}right)\
      &< dfrac{1}{2m}\
      &to 0 text{ as } m to infty\
      end{array}
      $



      If $n-m$ is odd,
      the sum changes
      by at most $frac1{n}$
      so it still goes to zero.







      share|cite|improve this answer












      share|cite|improve this answer



      share|cite|improve this answer










      answered 5 hours ago









      marty cohenmarty cohen

      73.8k549128




      73.8k549128








      • 1




        $begingroup$
        Thank you for such an elaborate proof , not ignoring the signs was an important step indeed.
        $endgroup$
        – kira0705
        4 hours ago














      • 1




        $begingroup$
        Thank you for such an elaborate proof , not ignoring the signs was an important step indeed.
        $endgroup$
        – kira0705
        4 hours ago








      1




      1




      $begingroup$
      Thank you for such an elaborate proof , not ignoring the signs was an important step indeed.
      $endgroup$
      – kira0705
      4 hours ago




      $begingroup$
      Thank you for such an elaborate proof , not ignoring the signs was an important step indeed.
      $endgroup$
      – kira0705
      4 hours ago











      2












      $begingroup$

      Hint :



      $$frac{1}{2n-1}-frac{1}{2n}=frac{1}{(2n-1)2n}leq frac{1}{(n-1)n}= frac{1}{n-1}-frac{1}{n} $$






      share|cite|improve this answer









      $endgroup$


















        2












        $begingroup$

        Hint :



        $$frac{1}{2n-1}-frac{1}{2n}=frac{1}{(2n-1)2n}leq frac{1}{(n-1)n}= frac{1}{n-1}-frac{1}{n} $$






        share|cite|improve this answer









        $endgroup$
















          2












          2








          2





          $begingroup$

          Hint :



          $$frac{1}{2n-1}-frac{1}{2n}=frac{1}{(2n-1)2n}leq frac{1}{(n-1)n}= frac{1}{n-1}-frac{1}{n} $$






          share|cite|improve this answer









          $endgroup$



          Hint :



          $$frac{1}{2n-1}-frac{1}{2n}=frac{1}{(2n-1)2n}leq frac{1}{(n-1)n}= frac{1}{n-1}-frac{1}{n} $$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 5 hours ago









          Clément GuérinClément Guérin

          10k1736




          10k1736























              0












              $begingroup$

              Fix $epsilon > 0$, then for $n > frac{2}{sqrt{epsilon}}$ (So since both sides of the inequality are positive, $n^2 > frac{4}{epsilon} implies frac{epsilon}{2} > frac{2}{n^2}$), observe that $$|f_n - f_{n+1}| = |frac{1}{n} + frac{1}{n+1}| = |frac{n+2}{n(n+1)}| = frac{n+2}{n(n+1)} < frac{n+2}{n^2} =frac{1}{n} +frac{2}{n^2} < frac{1}{frac{2}{sqrt{epsilon}}} + frac{epsilon}{2} = frac{sqrt{epsilon}}{2} + frac{epsilon}{2} < frac{epsilon}{2} + frac{epsilon}{2} = epsilon $$






              share|cite|improve this answer











              $endgroup$


















                0












                $begingroup$

                Fix $epsilon > 0$, then for $n > frac{2}{sqrt{epsilon}}$ (So since both sides of the inequality are positive, $n^2 > frac{4}{epsilon} implies frac{epsilon}{2} > frac{2}{n^2}$), observe that $$|f_n - f_{n+1}| = |frac{1}{n} + frac{1}{n+1}| = |frac{n+2}{n(n+1)}| = frac{n+2}{n(n+1)} < frac{n+2}{n^2} =frac{1}{n} +frac{2}{n^2} < frac{1}{frac{2}{sqrt{epsilon}}} + frac{epsilon}{2} = frac{sqrt{epsilon}}{2} + frac{epsilon}{2} < frac{epsilon}{2} + frac{epsilon}{2} = epsilon $$






                share|cite|improve this answer











                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  Fix $epsilon > 0$, then for $n > frac{2}{sqrt{epsilon}}$ (So since both sides of the inequality are positive, $n^2 > frac{4}{epsilon} implies frac{epsilon}{2} > frac{2}{n^2}$), observe that $$|f_n - f_{n+1}| = |frac{1}{n} + frac{1}{n+1}| = |frac{n+2}{n(n+1)}| = frac{n+2}{n(n+1)} < frac{n+2}{n^2} =frac{1}{n} +frac{2}{n^2} < frac{1}{frac{2}{sqrt{epsilon}}} + frac{epsilon}{2} = frac{sqrt{epsilon}}{2} + frac{epsilon}{2} < frac{epsilon}{2} + frac{epsilon}{2} = epsilon $$






                  share|cite|improve this answer











                  $endgroup$



                  Fix $epsilon > 0$, then for $n > frac{2}{sqrt{epsilon}}$ (So since both sides of the inequality are positive, $n^2 > frac{4}{epsilon} implies frac{epsilon}{2} > frac{2}{n^2}$), observe that $$|f_n - f_{n+1}| = |frac{1}{n} + frac{1}{n+1}| = |frac{n+2}{n(n+1)}| = frac{n+2}{n(n+1)} < frac{n+2}{n^2} =frac{1}{n} +frac{2}{n^2} < frac{1}{frac{2}{sqrt{epsilon}}} + frac{epsilon}{2} = frac{sqrt{epsilon}}{2} + frac{epsilon}{2} < frac{epsilon}{2} + frac{epsilon}{2} = epsilon $$







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited 4 hours ago

























                  answered 5 hours ago









                  user516079user516079

                  318210




                  318210






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3123120%2fshow-that-sequence-is-a-cauchy-sequence%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Сан-Квентин

                      8-я гвардейская общевойсковая армия

                      Алькесар