Tikz: The common tangent and the shaded region
What are possible options to construct the tangent line (along with the shaded region) as shown below?
MWE:
documentclass[tikz, border=1cm]{standalone}
begin{document}
begin{tikzpicture}
coordinate (A) at (0,0);
coordinate (B) at (0,7);
coordinate (C) at (7,7);
coordinate (D) at (7,0);
coordinate (E) at (0,4);
coordinate (F) at (3,7);
coordinate (G) at (7,4);
coordinate (H) at (3,0);
coordinate (M) at (5,2);
coordinate (N) at (1.5,5.5);
draw (A)--(B)--(C)--(D)--cycle;
draw (E)--(G);
draw (F)--(H);
draw (N) circle [radius=1.5];
draw (M) circle [radius=2];
end{tikzpicture}
end{document}
tikz-pgf
add a comment |
What are possible options to construct the tangent line (along with the shaded region) as shown below?
MWE:
documentclass[tikz, border=1cm]{standalone}
begin{document}
begin{tikzpicture}
coordinate (A) at (0,0);
coordinate (B) at (0,7);
coordinate (C) at (7,7);
coordinate (D) at (7,0);
coordinate (E) at (0,4);
coordinate (F) at (3,7);
coordinate (G) at (7,4);
coordinate (H) at (3,0);
coordinate (M) at (5,2);
coordinate (N) at (1.5,5.5);
draw (A)--(B)--(C)--(D)--cycle;
draw (E)--(G);
draw (F)--(H);
draw (N) circle [radius=1.5];
draw (M) circle [radius=2];
end{tikzpicture}
end{document}
tikz-pgf
add a comment |
What are possible options to construct the tangent line (along with the shaded region) as shown below?
MWE:
documentclass[tikz, border=1cm]{standalone}
begin{document}
begin{tikzpicture}
coordinate (A) at (0,0);
coordinate (B) at (0,7);
coordinate (C) at (7,7);
coordinate (D) at (7,0);
coordinate (E) at (0,4);
coordinate (F) at (3,7);
coordinate (G) at (7,4);
coordinate (H) at (3,0);
coordinate (M) at (5,2);
coordinate (N) at (1.5,5.5);
draw (A)--(B)--(C)--(D)--cycle;
draw (E)--(G);
draw (F)--(H);
draw (N) circle [radius=1.5];
draw (M) circle [radius=2];
end{tikzpicture}
end{document}
tikz-pgf
What are possible options to construct the tangent line (along with the shaded region) as shown below?
MWE:
documentclass[tikz, border=1cm]{standalone}
begin{document}
begin{tikzpicture}
coordinate (A) at (0,0);
coordinate (B) at (0,7);
coordinate (C) at (7,7);
coordinate (D) at (7,0);
coordinate (E) at (0,4);
coordinate (F) at (3,7);
coordinate (G) at (7,4);
coordinate (H) at (3,0);
coordinate (M) at (5,2);
coordinate (N) at (1.5,5.5);
draw (A)--(B)--(C)--(D)--cycle;
draw (E)--(G);
draw (F)--(H);
draw (N) circle [radius=1.5];
draw (M) circle [radius=2];
end{tikzpicture}
end{document}
tikz-pgf
tikz-pgf
edited Dec 10 '18 at 17:52
asked Dec 10 '18 at 14:28
blackened
1,449714
1,449714
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
Let me start by repeating the nice solution by LoopSpace, to whom I give full credit for the first part.
documentclass[tikz, border=1cm]{standalone}
usetikzlibrary{calc}
begin{document}
begin{tikzpicture}
coordinate (A) at (0,0);
coordinate (B) at (0,7);
coordinate (C) at (7,7);
coordinate (D) at (7,0);
coordinate (E) at (0,4);
coordinate (F) at (3,7);
coordinate (G) at (7,4);
coordinate (H) at (3,0);
coordinate (M) at (5,2);
coordinate (N) at (1.5,5.5);
draw (A)--(B)--(C)--(D)--cycle;
draw (E)--(G);
draw (F)--(H);
pgfmathsetmacro{rone}{1.5}
pgfmathsetmacro{rtwo}{2}
pgfmathsetmacro{mid}{rone/(rone + rtwo)}
pgfmathsetmacro{out}{rone/(rone - rtwo)}
node[circle,minimum size=2*rone*1cm,draw] (c1) at (N){};
node[circle,minimum size=2*rtwo*1cm,draw] (c2) at (M){};
path (c1.center) -- node[coordinate,pos=mid] (mid) {} (c2.center);
path (c1.center) -- node[coordinate,pos=out] (out) {} (c2.center);
foreach i in {1,2}
{foreach j in {1,2}
{foreach k in {mid,out}
{coordinate (tijk) at (tangent cs:node=ci,point={(k)},solution=j);}}}
foreach i in {2}
{
draw[red] ($(t1i out)!-1cm!(t2i out)$) -- ($(t2i out)!-1cm!(t1i out)$);
}
end{tikzpicture}
end{document}
However, this setup is so simple that I cannot refrain from adding an analytic determination of the tangent. (The other possible tangents can be added completely analogously). The observations that go into the analytic determination are
- The slope of the tangent is given by the slope of the line connecting the centers of the circles plus the ratio of the difference of the radii and the distance of the centers.
- Given the slope, the respective points on the circle are uniquely determined (modulo 180).
One thus arrives at
documentclass[tikz, border=1cm]{standalone}
usetikzlibrary{calc,backgrounds}
begin{document}
begin{tikzpicture}[tangent of circles/.style args={%
at #1 and #2 with radii #3 and #4}{insert path={%
let p1=($(#2)-(#1)$),n1={atan2(y1,x1)},n2={veclen(y1,x1)*1pt/1cm},
n3={atan2(#4-#3,n2)}
in ($(#1)+(n3+n1+90:#3)$) -- ($(#2)+(n3+n1+90:#4)$)}}]
coordinate (A) at (0,0);
coordinate (B) at (0,7);
coordinate (C) at (7,7);
coordinate (D) at (7,0);
coordinate (E) at (0,4);
coordinate (F) at (3,7);
coordinate (G) at (7,4);
coordinate (H) at (3,0);
coordinate (M) at (5,2);
coordinate (N) at (1.5,5.5);
draw (A)--(B)--(C)--(D)--cycle;
draw (E)--(G);
draw (F)--(H);
draw (N) circle [radius=1.5];
draw (M) circle [radius=2];
path[tangent of circles={at N and M with radii 1.5 and 2}]
coordinate[pos=0] (aux0) coordinate[pos=1] (aux1);
% extend the tangent
draw (intersection cs:first line={(aux0)--(aux1)}, second line={(C)--(D)})
-- (intersection cs:first line={(aux0)--(aux1)}, second line={(C)--(B)});
% fill the region above right of the tangent
begin{scope}[on background layer]
fill[gray!50] (intersection cs:first line={(aux0)--(aux1)},
second line={(E)--(G)}) -| (C) -|
(intersection cs:first line={(aux0)--(aux1)}, second line={(F)--(H)})
-- cycle;
end{scope}
% draw the little squares
draw[fill=gray!20] (C) rectangle ++ (-0.4,-0.4)
(F) rectangle ++ (0.4,-0.4)
(G) rectangle ++ (-0.4,0.4)
(intersection cs:first line={(E)--(G)}, second line={(F)--(H)})
rectangle ++ (0.4,0.4);
draw[fill,thick,-latex] (N) circle (1pt) -- ++(225:1.5) node[midway,above
left]
{$vec r_2$};
draw[fill,thick,-latex] (M) circle (1pt) -- ++(225:2) node[midway,above
left]
{$vec r_1$};
node at (barycentric cs:C=1,G=1,F=1) {$S_x$};
end{tikzpicture}
end{document}
Let me mention that I made no effort in shortening the code. One could kick out some coordinates, but I do not see any point in this. IMHO it would make the code just harder to understand.
The remaining annotation may be added withnode at (barycentric cs:C=1,G=1,F=1) {$S_x$};
.
– marmot
Dec 10 '18 at 17:22
1
@blackened I changed it (and also moved the labels, as suggested by Artificial Stupidity). However, I do not add an animation, if you want an animation, see here, and wait for a PSTricks variant ;-)
– marmot
Dec 10 '18 at 18:49
add a comment |
A PSTricks solution only for comparison purposes.
documentclass[pstricks,border=12pt,12pt]{standalone}
usepackage{pstricks-add,pst-eucl}
begin{document}
pspicture[PointName=none,PointSymbol=none](8,8)
pnodes(4,0){A}(4,8){B}(0,4){C}(8,4){D}(2,6){P}(6,2){Q}
psCircleTangents(P){2}(Q){2}
pstInterLL{CircleTO1}{CircleTO2}{A}{B}{X}
pstInterLL{CircleTO1}{CircleTO2}{C}{D}{Y}
pspolygon*[linecolor=lightgray](X)(B)(D|B)(D)(Y)
pcline[nodesep=-1.2](CircleTO1)(CircleTO2)
psframe(D|B)
psline(A)(B)
psline(C)(D)
pscircle(P){2}
pscircle(Q){2}
rput(A|D){psframe(12pt,12pt)}
rput{90}(D){psframe(12pt,12pt)}
rput{-90}(B){psframe(12pt,12pt)}
rput{180}(D|B){psframe(12pt,12pt)}
rput(Q|P){$S_x$}
pcline{<-}([angle=225,nodesep=2]P)(P)naput{$r_2$}
pcline{<-}([angle=225,nodesep=2]Q)(Q)naput{$r_1$}
endpspicture
end{document}
Different Radii
documentclass[pstricks,border=12pt,12pt]{standalone}
usepackage{pstricks-add,pst-eucl,pst-calculate}
begin{document}
foreach x in {4,4.5,...,6.0}{%
pspicture[PointName=none,PointSymbol=none](8,8)
pnodes(x,0){A}(A|0,8){B}(!0 8 xspace sub){C}(8,0|C){D}(!xspace 2 div dup neg 8 add){P}(!xspace 2 div dup 4 add exch neg 4 add){Q}
psCircleTangents(P){pscalculate{x/2}}(Q){pscalculate{(8-x)/2}}
pstInterLL{CircleTO1}{CircleTO2}{A}{B}{X}
pstInterLL{CircleTO1}{CircleTO2}{C}{D}{Y}
pspolygon*[linecolor=lightgray](X)(B)(D|B)(D)(Y)
pcline[nodesep=-2](CircleTO1)(CircleTO2)
psframe(D|B)
psline(A)(B)
psline(C)(D)
pscircle(P){pscalculate{x/2}}
pscircle(Q){pscalculate{(8-x)/2}}
rput(A|D){psframe(12pt,12pt)}
rput{90}(D){psframe(12pt,12pt)}
rput{-90}(B){psframe(12pt,12pt)}
rput{180}(D|B){psframe(12pt,12pt)}
rput(Q|P){$S_x$}
pcline{<-}([angle=225,nodesep=pscalculate{x/2}]P)(P)naput{$r_2$}
pcline{<-}([angle=225,nodesep=pscalculate{(8-x)/2}]Q)(Q)naput{$r_1$}
endpspicture}
end{document}
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "85"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f464139%2ftikz-the-common-tangent-and-the-shaded-region%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
Let me start by repeating the nice solution by LoopSpace, to whom I give full credit for the first part.
documentclass[tikz, border=1cm]{standalone}
usetikzlibrary{calc}
begin{document}
begin{tikzpicture}
coordinate (A) at (0,0);
coordinate (B) at (0,7);
coordinate (C) at (7,7);
coordinate (D) at (7,0);
coordinate (E) at (0,4);
coordinate (F) at (3,7);
coordinate (G) at (7,4);
coordinate (H) at (3,0);
coordinate (M) at (5,2);
coordinate (N) at (1.5,5.5);
draw (A)--(B)--(C)--(D)--cycle;
draw (E)--(G);
draw (F)--(H);
pgfmathsetmacro{rone}{1.5}
pgfmathsetmacro{rtwo}{2}
pgfmathsetmacro{mid}{rone/(rone + rtwo)}
pgfmathsetmacro{out}{rone/(rone - rtwo)}
node[circle,minimum size=2*rone*1cm,draw] (c1) at (N){};
node[circle,minimum size=2*rtwo*1cm,draw] (c2) at (M){};
path (c1.center) -- node[coordinate,pos=mid] (mid) {} (c2.center);
path (c1.center) -- node[coordinate,pos=out] (out) {} (c2.center);
foreach i in {1,2}
{foreach j in {1,2}
{foreach k in {mid,out}
{coordinate (tijk) at (tangent cs:node=ci,point={(k)},solution=j);}}}
foreach i in {2}
{
draw[red] ($(t1i out)!-1cm!(t2i out)$) -- ($(t2i out)!-1cm!(t1i out)$);
}
end{tikzpicture}
end{document}
However, this setup is so simple that I cannot refrain from adding an analytic determination of the tangent. (The other possible tangents can be added completely analogously). The observations that go into the analytic determination are
- The slope of the tangent is given by the slope of the line connecting the centers of the circles plus the ratio of the difference of the radii and the distance of the centers.
- Given the slope, the respective points on the circle are uniquely determined (modulo 180).
One thus arrives at
documentclass[tikz, border=1cm]{standalone}
usetikzlibrary{calc,backgrounds}
begin{document}
begin{tikzpicture}[tangent of circles/.style args={%
at #1 and #2 with radii #3 and #4}{insert path={%
let p1=($(#2)-(#1)$),n1={atan2(y1,x1)},n2={veclen(y1,x1)*1pt/1cm},
n3={atan2(#4-#3,n2)}
in ($(#1)+(n3+n1+90:#3)$) -- ($(#2)+(n3+n1+90:#4)$)}}]
coordinate (A) at (0,0);
coordinate (B) at (0,7);
coordinate (C) at (7,7);
coordinate (D) at (7,0);
coordinate (E) at (0,4);
coordinate (F) at (3,7);
coordinate (G) at (7,4);
coordinate (H) at (3,0);
coordinate (M) at (5,2);
coordinate (N) at (1.5,5.5);
draw (A)--(B)--(C)--(D)--cycle;
draw (E)--(G);
draw (F)--(H);
draw (N) circle [radius=1.5];
draw (M) circle [radius=2];
path[tangent of circles={at N and M with radii 1.5 and 2}]
coordinate[pos=0] (aux0) coordinate[pos=1] (aux1);
% extend the tangent
draw (intersection cs:first line={(aux0)--(aux1)}, second line={(C)--(D)})
-- (intersection cs:first line={(aux0)--(aux1)}, second line={(C)--(B)});
% fill the region above right of the tangent
begin{scope}[on background layer]
fill[gray!50] (intersection cs:first line={(aux0)--(aux1)},
second line={(E)--(G)}) -| (C) -|
(intersection cs:first line={(aux0)--(aux1)}, second line={(F)--(H)})
-- cycle;
end{scope}
% draw the little squares
draw[fill=gray!20] (C) rectangle ++ (-0.4,-0.4)
(F) rectangle ++ (0.4,-0.4)
(G) rectangle ++ (-0.4,0.4)
(intersection cs:first line={(E)--(G)}, second line={(F)--(H)})
rectangle ++ (0.4,0.4);
draw[fill,thick,-latex] (N) circle (1pt) -- ++(225:1.5) node[midway,above
left]
{$vec r_2$};
draw[fill,thick,-latex] (M) circle (1pt) -- ++(225:2) node[midway,above
left]
{$vec r_1$};
node at (barycentric cs:C=1,G=1,F=1) {$S_x$};
end{tikzpicture}
end{document}
Let me mention that I made no effort in shortening the code. One could kick out some coordinates, but I do not see any point in this. IMHO it would make the code just harder to understand.
The remaining annotation may be added withnode at (barycentric cs:C=1,G=1,F=1) {$S_x$};
.
– marmot
Dec 10 '18 at 17:22
1
@blackened I changed it (and also moved the labels, as suggested by Artificial Stupidity). However, I do not add an animation, if you want an animation, see here, and wait for a PSTricks variant ;-)
– marmot
Dec 10 '18 at 18:49
add a comment |
Let me start by repeating the nice solution by LoopSpace, to whom I give full credit for the first part.
documentclass[tikz, border=1cm]{standalone}
usetikzlibrary{calc}
begin{document}
begin{tikzpicture}
coordinate (A) at (0,0);
coordinate (B) at (0,7);
coordinate (C) at (7,7);
coordinate (D) at (7,0);
coordinate (E) at (0,4);
coordinate (F) at (3,7);
coordinate (G) at (7,4);
coordinate (H) at (3,0);
coordinate (M) at (5,2);
coordinate (N) at (1.5,5.5);
draw (A)--(B)--(C)--(D)--cycle;
draw (E)--(G);
draw (F)--(H);
pgfmathsetmacro{rone}{1.5}
pgfmathsetmacro{rtwo}{2}
pgfmathsetmacro{mid}{rone/(rone + rtwo)}
pgfmathsetmacro{out}{rone/(rone - rtwo)}
node[circle,minimum size=2*rone*1cm,draw] (c1) at (N){};
node[circle,minimum size=2*rtwo*1cm,draw] (c2) at (M){};
path (c1.center) -- node[coordinate,pos=mid] (mid) {} (c2.center);
path (c1.center) -- node[coordinate,pos=out] (out) {} (c2.center);
foreach i in {1,2}
{foreach j in {1,2}
{foreach k in {mid,out}
{coordinate (tijk) at (tangent cs:node=ci,point={(k)},solution=j);}}}
foreach i in {2}
{
draw[red] ($(t1i out)!-1cm!(t2i out)$) -- ($(t2i out)!-1cm!(t1i out)$);
}
end{tikzpicture}
end{document}
However, this setup is so simple that I cannot refrain from adding an analytic determination of the tangent. (The other possible tangents can be added completely analogously). The observations that go into the analytic determination are
- The slope of the tangent is given by the slope of the line connecting the centers of the circles plus the ratio of the difference of the radii and the distance of the centers.
- Given the slope, the respective points on the circle are uniquely determined (modulo 180).
One thus arrives at
documentclass[tikz, border=1cm]{standalone}
usetikzlibrary{calc,backgrounds}
begin{document}
begin{tikzpicture}[tangent of circles/.style args={%
at #1 and #2 with radii #3 and #4}{insert path={%
let p1=($(#2)-(#1)$),n1={atan2(y1,x1)},n2={veclen(y1,x1)*1pt/1cm},
n3={atan2(#4-#3,n2)}
in ($(#1)+(n3+n1+90:#3)$) -- ($(#2)+(n3+n1+90:#4)$)}}]
coordinate (A) at (0,0);
coordinate (B) at (0,7);
coordinate (C) at (7,7);
coordinate (D) at (7,0);
coordinate (E) at (0,4);
coordinate (F) at (3,7);
coordinate (G) at (7,4);
coordinate (H) at (3,0);
coordinate (M) at (5,2);
coordinate (N) at (1.5,5.5);
draw (A)--(B)--(C)--(D)--cycle;
draw (E)--(G);
draw (F)--(H);
draw (N) circle [radius=1.5];
draw (M) circle [radius=2];
path[tangent of circles={at N and M with radii 1.5 and 2}]
coordinate[pos=0] (aux0) coordinate[pos=1] (aux1);
% extend the tangent
draw (intersection cs:first line={(aux0)--(aux1)}, second line={(C)--(D)})
-- (intersection cs:first line={(aux0)--(aux1)}, second line={(C)--(B)});
% fill the region above right of the tangent
begin{scope}[on background layer]
fill[gray!50] (intersection cs:first line={(aux0)--(aux1)},
second line={(E)--(G)}) -| (C) -|
(intersection cs:first line={(aux0)--(aux1)}, second line={(F)--(H)})
-- cycle;
end{scope}
% draw the little squares
draw[fill=gray!20] (C) rectangle ++ (-0.4,-0.4)
(F) rectangle ++ (0.4,-0.4)
(G) rectangle ++ (-0.4,0.4)
(intersection cs:first line={(E)--(G)}, second line={(F)--(H)})
rectangle ++ (0.4,0.4);
draw[fill,thick,-latex] (N) circle (1pt) -- ++(225:1.5) node[midway,above
left]
{$vec r_2$};
draw[fill,thick,-latex] (M) circle (1pt) -- ++(225:2) node[midway,above
left]
{$vec r_1$};
node at (barycentric cs:C=1,G=1,F=1) {$S_x$};
end{tikzpicture}
end{document}
Let me mention that I made no effort in shortening the code. One could kick out some coordinates, but I do not see any point in this. IMHO it would make the code just harder to understand.
The remaining annotation may be added withnode at (barycentric cs:C=1,G=1,F=1) {$S_x$};
.
– marmot
Dec 10 '18 at 17:22
1
@blackened I changed it (and also moved the labels, as suggested by Artificial Stupidity). However, I do not add an animation, if you want an animation, see here, and wait for a PSTricks variant ;-)
– marmot
Dec 10 '18 at 18:49
add a comment |
Let me start by repeating the nice solution by LoopSpace, to whom I give full credit for the first part.
documentclass[tikz, border=1cm]{standalone}
usetikzlibrary{calc}
begin{document}
begin{tikzpicture}
coordinate (A) at (0,0);
coordinate (B) at (0,7);
coordinate (C) at (7,7);
coordinate (D) at (7,0);
coordinate (E) at (0,4);
coordinate (F) at (3,7);
coordinate (G) at (7,4);
coordinate (H) at (3,0);
coordinate (M) at (5,2);
coordinate (N) at (1.5,5.5);
draw (A)--(B)--(C)--(D)--cycle;
draw (E)--(G);
draw (F)--(H);
pgfmathsetmacro{rone}{1.5}
pgfmathsetmacro{rtwo}{2}
pgfmathsetmacro{mid}{rone/(rone + rtwo)}
pgfmathsetmacro{out}{rone/(rone - rtwo)}
node[circle,minimum size=2*rone*1cm,draw] (c1) at (N){};
node[circle,minimum size=2*rtwo*1cm,draw] (c2) at (M){};
path (c1.center) -- node[coordinate,pos=mid] (mid) {} (c2.center);
path (c1.center) -- node[coordinate,pos=out] (out) {} (c2.center);
foreach i in {1,2}
{foreach j in {1,2}
{foreach k in {mid,out}
{coordinate (tijk) at (tangent cs:node=ci,point={(k)},solution=j);}}}
foreach i in {2}
{
draw[red] ($(t1i out)!-1cm!(t2i out)$) -- ($(t2i out)!-1cm!(t1i out)$);
}
end{tikzpicture}
end{document}
However, this setup is so simple that I cannot refrain from adding an analytic determination of the tangent. (The other possible tangents can be added completely analogously). The observations that go into the analytic determination are
- The slope of the tangent is given by the slope of the line connecting the centers of the circles plus the ratio of the difference of the radii and the distance of the centers.
- Given the slope, the respective points on the circle are uniquely determined (modulo 180).
One thus arrives at
documentclass[tikz, border=1cm]{standalone}
usetikzlibrary{calc,backgrounds}
begin{document}
begin{tikzpicture}[tangent of circles/.style args={%
at #1 and #2 with radii #3 and #4}{insert path={%
let p1=($(#2)-(#1)$),n1={atan2(y1,x1)},n2={veclen(y1,x1)*1pt/1cm},
n3={atan2(#4-#3,n2)}
in ($(#1)+(n3+n1+90:#3)$) -- ($(#2)+(n3+n1+90:#4)$)}}]
coordinate (A) at (0,0);
coordinate (B) at (0,7);
coordinate (C) at (7,7);
coordinate (D) at (7,0);
coordinate (E) at (0,4);
coordinate (F) at (3,7);
coordinate (G) at (7,4);
coordinate (H) at (3,0);
coordinate (M) at (5,2);
coordinate (N) at (1.5,5.5);
draw (A)--(B)--(C)--(D)--cycle;
draw (E)--(G);
draw (F)--(H);
draw (N) circle [radius=1.5];
draw (M) circle [radius=2];
path[tangent of circles={at N and M with radii 1.5 and 2}]
coordinate[pos=0] (aux0) coordinate[pos=1] (aux1);
% extend the tangent
draw (intersection cs:first line={(aux0)--(aux1)}, second line={(C)--(D)})
-- (intersection cs:first line={(aux0)--(aux1)}, second line={(C)--(B)});
% fill the region above right of the tangent
begin{scope}[on background layer]
fill[gray!50] (intersection cs:first line={(aux0)--(aux1)},
second line={(E)--(G)}) -| (C) -|
(intersection cs:first line={(aux0)--(aux1)}, second line={(F)--(H)})
-- cycle;
end{scope}
% draw the little squares
draw[fill=gray!20] (C) rectangle ++ (-0.4,-0.4)
(F) rectangle ++ (0.4,-0.4)
(G) rectangle ++ (-0.4,0.4)
(intersection cs:first line={(E)--(G)}, second line={(F)--(H)})
rectangle ++ (0.4,0.4);
draw[fill,thick,-latex] (N) circle (1pt) -- ++(225:1.5) node[midway,above
left]
{$vec r_2$};
draw[fill,thick,-latex] (M) circle (1pt) -- ++(225:2) node[midway,above
left]
{$vec r_1$};
node at (barycentric cs:C=1,G=1,F=1) {$S_x$};
end{tikzpicture}
end{document}
Let me mention that I made no effort in shortening the code. One could kick out some coordinates, but I do not see any point in this. IMHO it would make the code just harder to understand.
Let me start by repeating the nice solution by LoopSpace, to whom I give full credit for the first part.
documentclass[tikz, border=1cm]{standalone}
usetikzlibrary{calc}
begin{document}
begin{tikzpicture}
coordinate (A) at (0,0);
coordinate (B) at (0,7);
coordinate (C) at (7,7);
coordinate (D) at (7,0);
coordinate (E) at (0,4);
coordinate (F) at (3,7);
coordinate (G) at (7,4);
coordinate (H) at (3,0);
coordinate (M) at (5,2);
coordinate (N) at (1.5,5.5);
draw (A)--(B)--(C)--(D)--cycle;
draw (E)--(G);
draw (F)--(H);
pgfmathsetmacro{rone}{1.5}
pgfmathsetmacro{rtwo}{2}
pgfmathsetmacro{mid}{rone/(rone + rtwo)}
pgfmathsetmacro{out}{rone/(rone - rtwo)}
node[circle,minimum size=2*rone*1cm,draw] (c1) at (N){};
node[circle,minimum size=2*rtwo*1cm,draw] (c2) at (M){};
path (c1.center) -- node[coordinate,pos=mid] (mid) {} (c2.center);
path (c1.center) -- node[coordinate,pos=out] (out) {} (c2.center);
foreach i in {1,2}
{foreach j in {1,2}
{foreach k in {mid,out}
{coordinate (tijk) at (tangent cs:node=ci,point={(k)},solution=j);}}}
foreach i in {2}
{
draw[red] ($(t1i out)!-1cm!(t2i out)$) -- ($(t2i out)!-1cm!(t1i out)$);
}
end{tikzpicture}
end{document}
However, this setup is so simple that I cannot refrain from adding an analytic determination of the tangent. (The other possible tangents can be added completely analogously). The observations that go into the analytic determination are
- The slope of the tangent is given by the slope of the line connecting the centers of the circles plus the ratio of the difference of the radii and the distance of the centers.
- Given the slope, the respective points on the circle are uniquely determined (modulo 180).
One thus arrives at
documentclass[tikz, border=1cm]{standalone}
usetikzlibrary{calc,backgrounds}
begin{document}
begin{tikzpicture}[tangent of circles/.style args={%
at #1 and #2 with radii #3 and #4}{insert path={%
let p1=($(#2)-(#1)$),n1={atan2(y1,x1)},n2={veclen(y1,x1)*1pt/1cm},
n3={atan2(#4-#3,n2)}
in ($(#1)+(n3+n1+90:#3)$) -- ($(#2)+(n3+n1+90:#4)$)}}]
coordinate (A) at (0,0);
coordinate (B) at (0,7);
coordinate (C) at (7,7);
coordinate (D) at (7,0);
coordinate (E) at (0,4);
coordinate (F) at (3,7);
coordinate (G) at (7,4);
coordinate (H) at (3,0);
coordinate (M) at (5,2);
coordinate (N) at (1.5,5.5);
draw (A)--(B)--(C)--(D)--cycle;
draw (E)--(G);
draw (F)--(H);
draw (N) circle [radius=1.5];
draw (M) circle [radius=2];
path[tangent of circles={at N and M with radii 1.5 and 2}]
coordinate[pos=0] (aux0) coordinate[pos=1] (aux1);
% extend the tangent
draw (intersection cs:first line={(aux0)--(aux1)}, second line={(C)--(D)})
-- (intersection cs:first line={(aux0)--(aux1)}, second line={(C)--(B)});
% fill the region above right of the tangent
begin{scope}[on background layer]
fill[gray!50] (intersection cs:first line={(aux0)--(aux1)},
second line={(E)--(G)}) -| (C) -|
(intersection cs:first line={(aux0)--(aux1)}, second line={(F)--(H)})
-- cycle;
end{scope}
% draw the little squares
draw[fill=gray!20] (C) rectangle ++ (-0.4,-0.4)
(F) rectangle ++ (0.4,-0.4)
(G) rectangle ++ (-0.4,0.4)
(intersection cs:first line={(E)--(G)}, second line={(F)--(H)})
rectangle ++ (0.4,0.4);
draw[fill,thick,-latex] (N) circle (1pt) -- ++(225:1.5) node[midway,above
left]
{$vec r_2$};
draw[fill,thick,-latex] (M) circle (1pt) -- ++(225:2) node[midway,above
left]
{$vec r_1$};
node at (barycentric cs:C=1,G=1,F=1) {$S_x$};
end{tikzpicture}
end{document}
Let me mention that I made no effort in shortening the code. One could kick out some coordinates, but I do not see any point in this. IMHO it would make the code just harder to understand.
edited Dec 10 '18 at 18:47
answered Dec 10 '18 at 14:43
marmot
89.1k4102191
89.1k4102191
The remaining annotation may be added withnode at (barycentric cs:C=1,G=1,F=1) {$S_x$};
.
– marmot
Dec 10 '18 at 17:22
1
@blackened I changed it (and also moved the labels, as suggested by Artificial Stupidity). However, I do not add an animation, if you want an animation, see here, and wait for a PSTricks variant ;-)
– marmot
Dec 10 '18 at 18:49
add a comment |
The remaining annotation may be added withnode at (barycentric cs:C=1,G=1,F=1) {$S_x$};
.
– marmot
Dec 10 '18 at 17:22
1
@blackened I changed it (and also moved the labels, as suggested by Artificial Stupidity). However, I do not add an animation, if you want an animation, see here, and wait for a PSTricks variant ;-)
– marmot
Dec 10 '18 at 18:49
The remaining annotation may be added with
node at (barycentric cs:C=1,G=1,F=1) {$S_x$};
.– marmot
Dec 10 '18 at 17:22
The remaining annotation may be added with
node at (barycentric cs:C=1,G=1,F=1) {$S_x$};
.– marmot
Dec 10 '18 at 17:22
1
1
@blackened I changed it (and also moved the labels, as suggested by Artificial Stupidity). However, I do not add an animation, if you want an animation, see here, and wait for a PSTricks variant ;-)
– marmot
Dec 10 '18 at 18:49
@blackened I changed it (and also moved the labels, as suggested by Artificial Stupidity). However, I do not add an animation, if you want an animation, see here, and wait for a PSTricks variant ;-)
– marmot
Dec 10 '18 at 18:49
add a comment |
A PSTricks solution only for comparison purposes.
documentclass[pstricks,border=12pt,12pt]{standalone}
usepackage{pstricks-add,pst-eucl}
begin{document}
pspicture[PointName=none,PointSymbol=none](8,8)
pnodes(4,0){A}(4,8){B}(0,4){C}(8,4){D}(2,6){P}(6,2){Q}
psCircleTangents(P){2}(Q){2}
pstInterLL{CircleTO1}{CircleTO2}{A}{B}{X}
pstInterLL{CircleTO1}{CircleTO2}{C}{D}{Y}
pspolygon*[linecolor=lightgray](X)(B)(D|B)(D)(Y)
pcline[nodesep=-1.2](CircleTO1)(CircleTO2)
psframe(D|B)
psline(A)(B)
psline(C)(D)
pscircle(P){2}
pscircle(Q){2}
rput(A|D){psframe(12pt,12pt)}
rput{90}(D){psframe(12pt,12pt)}
rput{-90}(B){psframe(12pt,12pt)}
rput{180}(D|B){psframe(12pt,12pt)}
rput(Q|P){$S_x$}
pcline{<-}([angle=225,nodesep=2]P)(P)naput{$r_2$}
pcline{<-}([angle=225,nodesep=2]Q)(Q)naput{$r_1$}
endpspicture
end{document}
Different Radii
documentclass[pstricks,border=12pt,12pt]{standalone}
usepackage{pstricks-add,pst-eucl,pst-calculate}
begin{document}
foreach x in {4,4.5,...,6.0}{%
pspicture[PointName=none,PointSymbol=none](8,8)
pnodes(x,0){A}(A|0,8){B}(!0 8 xspace sub){C}(8,0|C){D}(!xspace 2 div dup neg 8 add){P}(!xspace 2 div dup 4 add exch neg 4 add){Q}
psCircleTangents(P){pscalculate{x/2}}(Q){pscalculate{(8-x)/2}}
pstInterLL{CircleTO1}{CircleTO2}{A}{B}{X}
pstInterLL{CircleTO1}{CircleTO2}{C}{D}{Y}
pspolygon*[linecolor=lightgray](X)(B)(D|B)(D)(Y)
pcline[nodesep=-2](CircleTO1)(CircleTO2)
psframe(D|B)
psline(A)(B)
psline(C)(D)
pscircle(P){pscalculate{x/2}}
pscircle(Q){pscalculate{(8-x)/2}}
rput(A|D){psframe(12pt,12pt)}
rput{90}(D){psframe(12pt,12pt)}
rput{-90}(B){psframe(12pt,12pt)}
rput{180}(D|B){psframe(12pt,12pt)}
rput(Q|P){$S_x$}
pcline{<-}([angle=225,nodesep=pscalculate{x/2}]P)(P)naput{$r_2$}
pcline{<-}([angle=225,nodesep=pscalculate{(8-x)/2}]Q)(Q)naput{$r_1$}
endpspicture}
end{document}
add a comment |
A PSTricks solution only for comparison purposes.
documentclass[pstricks,border=12pt,12pt]{standalone}
usepackage{pstricks-add,pst-eucl}
begin{document}
pspicture[PointName=none,PointSymbol=none](8,8)
pnodes(4,0){A}(4,8){B}(0,4){C}(8,4){D}(2,6){P}(6,2){Q}
psCircleTangents(P){2}(Q){2}
pstInterLL{CircleTO1}{CircleTO2}{A}{B}{X}
pstInterLL{CircleTO1}{CircleTO2}{C}{D}{Y}
pspolygon*[linecolor=lightgray](X)(B)(D|B)(D)(Y)
pcline[nodesep=-1.2](CircleTO1)(CircleTO2)
psframe(D|B)
psline(A)(B)
psline(C)(D)
pscircle(P){2}
pscircle(Q){2}
rput(A|D){psframe(12pt,12pt)}
rput{90}(D){psframe(12pt,12pt)}
rput{-90}(B){psframe(12pt,12pt)}
rput{180}(D|B){psframe(12pt,12pt)}
rput(Q|P){$S_x$}
pcline{<-}([angle=225,nodesep=2]P)(P)naput{$r_2$}
pcline{<-}([angle=225,nodesep=2]Q)(Q)naput{$r_1$}
endpspicture
end{document}
Different Radii
documentclass[pstricks,border=12pt,12pt]{standalone}
usepackage{pstricks-add,pst-eucl,pst-calculate}
begin{document}
foreach x in {4,4.5,...,6.0}{%
pspicture[PointName=none,PointSymbol=none](8,8)
pnodes(x,0){A}(A|0,8){B}(!0 8 xspace sub){C}(8,0|C){D}(!xspace 2 div dup neg 8 add){P}(!xspace 2 div dup 4 add exch neg 4 add){Q}
psCircleTangents(P){pscalculate{x/2}}(Q){pscalculate{(8-x)/2}}
pstInterLL{CircleTO1}{CircleTO2}{A}{B}{X}
pstInterLL{CircleTO1}{CircleTO2}{C}{D}{Y}
pspolygon*[linecolor=lightgray](X)(B)(D|B)(D)(Y)
pcline[nodesep=-2](CircleTO1)(CircleTO2)
psframe(D|B)
psline(A)(B)
psline(C)(D)
pscircle(P){pscalculate{x/2}}
pscircle(Q){pscalculate{(8-x)/2}}
rput(A|D){psframe(12pt,12pt)}
rput{90}(D){psframe(12pt,12pt)}
rput{-90}(B){psframe(12pt,12pt)}
rput{180}(D|B){psframe(12pt,12pt)}
rput(Q|P){$S_x$}
pcline{<-}([angle=225,nodesep=pscalculate{x/2}]P)(P)naput{$r_2$}
pcline{<-}([angle=225,nodesep=pscalculate{(8-x)/2}]Q)(Q)naput{$r_1$}
endpspicture}
end{document}
add a comment |
A PSTricks solution only for comparison purposes.
documentclass[pstricks,border=12pt,12pt]{standalone}
usepackage{pstricks-add,pst-eucl}
begin{document}
pspicture[PointName=none,PointSymbol=none](8,8)
pnodes(4,0){A}(4,8){B}(0,4){C}(8,4){D}(2,6){P}(6,2){Q}
psCircleTangents(P){2}(Q){2}
pstInterLL{CircleTO1}{CircleTO2}{A}{B}{X}
pstInterLL{CircleTO1}{CircleTO2}{C}{D}{Y}
pspolygon*[linecolor=lightgray](X)(B)(D|B)(D)(Y)
pcline[nodesep=-1.2](CircleTO1)(CircleTO2)
psframe(D|B)
psline(A)(B)
psline(C)(D)
pscircle(P){2}
pscircle(Q){2}
rput(A|D){psframe(12pt,12pt)}
rput{90}(D){psframe(12pt,12pt)}
rput{-90}(B){psframe(12pt,12pt)}
rput{180}(D|B){psframe(12pt,12pt)}
rput(Q|P){$S_x$}
pcline{<-}([angle=225,nodesep=2]P)(P)naput{$r_2$}
pcline{<-}([angle=225,nodesep=2]Q)(Q)naput{$r_1$}
endpspicture
end{document}
Different Radii
documentclass[pstricks,border=12pt,12pt]{standalone}
usepackage{pstricks-add,pst-eucl,pst-calculate}
begin{document}
foreach x in {4,4.5,...,6.0}{%
pspicture[PointName=none,PointSymbol=none](8,8)
pnodes(x,0){A}(A|0,8){B}(!0 8 xspace sub){C}(8,0|C){D}(!xspace 2 div dup neg 8 add){P}(!xspace 2 div dup 4 add exch neg 4 add){Q}
psCircleTangents(P){pscalculate{x/2}}(Q){pscalculate{(8-x)/2}}
pstInterLL{CircleTO1}{CircleTO2}{A}{B}{X}
pstInterLL{CircleTO1}{CircleTO2}{C}{D}{Y}
pspolygon*[linecolor=lightgray](X)(B)(D|B)(D)(Y)
pcline[nodesep=-2](CircleTO1)(CircleTO2)
psframe(D|B)
psline(A)(B)
psline(C)(D)
pscircle(P){pscalculate{x/2}}
pscircle(Q){pscalculate{(8-x)/2}}
rput(A|D){psframe(12pt,12pt)}
rput{90}(D){psframe(12pt,12pt)}
rput{-90}(B){psframe(12pt,12pt)}
rput{180}(D|B){psframe(12pt,12pt)}
rput(Q|P){$S_x$}
pcline{<-}([angle=225,nodesep=pscalculate{x/2}]P)(P)naput{$r_2$}
pcline{<-}([angle=225,nodesep=pscalculate{(8-x)/2}]Q)(Q)naput{$r_1$}
endpspicture}
end{document}
A PSTricks solution only for comparison purposes.
documentclass[pstricks,border=12pt,12pt]{standalone}
usepackage{pstricks-add,pst-eucl}
begin{document}
pspicture[PointName=none,PointSymbol=none](8,8)
pnodes(4,0){A}(4,8){B}(0,4){C}(8,4){D}(2,6){P}(6,2){Q}
psCircleTangents(P){2}(Q){2}
pstInterLL{CircleTO1}{CircleTO2}{A}{B}{X}
pstInterLL{CircleTO1}{CircleTO2}{C}{D}{Y}
pspolygon*[linecolor=lightgray](X)(B)(D|B)(D)(Y)
pcline[nodesep=-1.2](CircleTO1)(CircleTO2)
psframe(D|B)
psline(A)(B)
psline(C)(D)
pscircle(P){2}
pscircle(Q){2}
rput(A|D){psframe(12pt,12pt)}
rput{90}(D){psframe(12pt,12pt)}
rput{-90}(B){psframe(12pt,12pt)}
rput{180}(D|B){psframe(12pt,12pt)}
rput(Q|P){$S_x$}
pcline{<-}([angle=225,nodesep=2]P)(P)naput{$r_2$}
pcline{<-}([angle=225,nodesep=2]Q)(Q)naput{$r_1$}
endpspicture
end{document}
Different Radii
documentclass[pstricks,border=12pt,12pt]{standalone}
usepackage{pstricks-add,pst-eucl,pst-calculate}
begin{document}
foreach x in {4,4.5,...,6.0}{%
pspicture[PointName=none,PointSymbol=none](8,8)
pnodes(x,0){A}(A|0,8){B}(!0 8 xspace sub){C}(8,0|C){D}(!xspace 2 div dup neg 8 add){P}(!xspace 2 div dup 4 add exch neg 4 add){Q}
psCircleTangents(P){pscalculate{x/2}}(Q){pscalculate{(8-x)/2}}
pstInterLL{CircleTO1}{CircleTO2}{A}{B}{X}
pstInterLL{CircleTO1}{CircleTO2}{C}{D}{Y}
pspolygon*[linecolor=lightgray](X)(B)(D|B)(D)(Y)
pcline[nodesep=-2](CircleTO1)(CircleTO2)
psframe(D|B)
psline(A)(B)
psline(C)(D)
pscircle(P){pscalculate{x/2}}
pscircle(Q){pscalculate{(8-x)/2}}
rput(A|D){psframe(12pt,12pt)}
rput{90}(D){psframe(12pt,12pt)}
rput{-90}(B){psframe(12pt,12pt)}
rput{180}(D|B){psframe(12pt,12pt)}
rput(Q|P){$S_x$}
pcline{<-}([angle=225,nodesep=pscalculate{x/2}]P)(P)naput{$r_2$}
pcline{<-}([angle=225,nodesep=pscalculate{(8-x)/2}]Q)(Q)naput{$r_1$}
endpspicture}
end{document}
edited Dec 10 '18 at 17:35
answered Dec 10 '18 at 14:59
God Must Be Crazy
5,79711039
5,79711039
add a comment |
add a comment |
Thanks for contributing an answer to TeX - LaTeX Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f464139%2ftikz-the-common-tangent-and-the-shaded-region%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown