Why is this code so slow?
$begingroup$
This code for the first five iterations the speed is okay , but after that the speed is very slow, I cannot understand what is wrong with this? Would you please help me fix it?
Clear[A, r, x, s, e]
s := 0.3405
e := 1.6539*10^-21
u[0] := 0.
u[1] := 0.1
A[r_] := A[r] =
Piecewise[{{r - 2.5 s - 48*e *s^12*r^-13 + 24*e*s^6*r^-7,
r > 2.5 s}, {-48*e*s^12*r^-13 + 24*e*s^6*r^-7,
s [LessSlantEqual] r [LessSlantEqual] 2.5 s}, {r - s -
24*e*s^-1, r < s}}]
For[i = 2, i < 101,
i++, { u[i_] :=
x /. FindRoot[
u[i - 1] +
1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) -
0.9 A[x] == x , {x, 1.}]; Print[u[i]]}]
equation-solving iteration
$endgroup$
add a comment |
$begingroup$
This code for the first five iterations the speed is okay , but after that the speed is very slow, I cannot understand what is wrong with this? Would you please help me fix it?
Clear[A, r, x, s, e]
s := 0.3405
e := 1.6539*10^-21
u[0] := 0.
u[1] := 0.1
A[r_] := A[r] =
Piecewise[{{r - 2.5 s - 48*e *s^12*r^-13 + 24*e*s^6*r^-7,
r > 2.5 s}, {-48*e*s^12*r^-13 + 24*e*s^6*r^-7,
s [LessSlantEqual] r [LessSlantEqual] 2.5 s}, {r - s -
24*e*s^-1, r < s}}]
For[i = 2, i < 101,
i++, { u[i_] :=
x /. FindRoot[
u[i - 1] +
1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) -
0.9 A[x] == x , {x, 1.}]; Print[u[i]]}]
equation-solving iteration
$endgroup$
add a comment |
$begingroup$
This code for the first five iterations the speed is okay , but after that the speed is very slow, I cannot understand what is wrong with this? Would you please help me fix it?
Clear[A, r, x, s, e]
s := 0.3405
e := 1.6539*10^-21
u[0] := 0.
u[1] := 0.1
A[r_] := A[r] =
Piecewise[{{r - 2.5 s - 48*e *s^12*r^-13 + 24*e*s^6*r^-7,
r > 2.5 s}, {-48*e*s^12*r^-13 + 24*e*s^6*r^-7,
s [LessSlantEqual] r [LessSlantEqual] 2.5 s}, {r - s -
24*e*s^-1, r < s}}]
For[i = 2, i < 101,
i++, { u[i_] :=
x /. FindRoot[
u[i - 1] +
1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) -
0.9 A[x] == x , {x, 1.}]; Print[u[i]]}]
equation-solving iteration
$endgroup$
This code for the first five iterations the speed is okay , but after that the speed is very slow, I cannot understand what is wrong with this? Would you please help me fix it?
Clear[A, r, x, s, e]
s := 0.3405
e := 1.6539*10^-21
u[0] := 0.
u[1] := 0.1
A[r_] := A[r] =
Piecewise[{{r - 2.5 s - 48*e *s^12*r^-13 + 24*e*s^6*r^-7,
r > 2.5 s}, {-48*e*s^12*r^-13 + 24*e*s^6*r^-7,
s [LessSlantEqual] r [LessSlantEqual] 2.5 s}, {r - s -
24*e*s^-1, r < s}}]
For[i = 2, i < 101,
i++, { u[i_] :=
x /. FindRoot[
u[i - 1] +
1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) -
0.9 A[x] == x , {x, 1.}]; Print[u[i]]}]
equation-solving iteration
equation-solving iteration
asked 2 hours ago
morapimorapi
203
203
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
I recommend you learn the distinction between immediate (=
) and delayed (:=
) assignments. They make the difference between slow and fast code here. Start with this tutorial or this book chapter, then look at memoization.
s = 0.3405;
e = 1.6539*10^-21;
u[0] = 0.;
u[1] = 0.1;
A[r_] = Piecewise[{{r - 2.5 s - 48*e*s^12*r^-13 + 24*e*s^6*r^-7, r > 2.5 s},
{-48*e*s^12*r^-13 + 24*e*s^6*r^-7, s <= r <= 2.5 s},
{r - s - 24*e*s^-1, r < s}}];
u[i_] := u[i] = x /. FindRoot[
u[i - 1] + 1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) - 0.9 A[x] == x, {x, 1.}]
Array[u, 100]
{0.1, 1.77164, 1.37065, 1.04259, 0.887781, 0.708344, 0.59461,
0.457228, 0.367364, 0.296071, 0.256104, 0.20463, 0.208487, 1.20917,
1.04197, 0.939331, 0.879865, 0.827963, 0.774591, 0.72775, 0.67934,
0.63666, 0.592369, 0.553172, 0.512352, 0.476112, 0.438261, 0.404563,
0.369277, 0.339073, 0.321616, 0.301118, 0.296195, 0.224688, 0.273538,
0.31357, 0.33593, 0.366902, 0.38813, 0.417572, 0.437777, 0.465834,
0.48511, 0.511907, 0.530336, 0.55598, 0.573633, 0.598219, 0.615159,
0.638772, 0.655054, 0.677768, 0.693441, 0.715321, 0.73043, 0.751535,
0.766118, 0.786503, 0.800596, 0.820306, 0.833941, 0.852182, 0.85901,
0.874152, 0.871531, 0.78396, 0.781416, 0.696402, 0.693931, 0.611329,
0.608927, 0.528603, 0.526267, 0.448099, 0.445825, 0.369701, 0.367485,
0.315658, 0.325798, 0.341207, 0.351098, 0.366134, 0.375788, 0.390468,
0.399897, 0.414237, 0.42345, 0.437466, 0.446473, 0.46018, 0.46899,
0.4824, 0.491022, 0.504149, 0.51259, 0.525444, 0.533712, 0.546306,
0.554408, 0.56675}
(takes about 5 seconds)
Alternatively, use
Table[u[i], {i, 1, 100}]
(same result). Your combination of For
and Print
shows the results but doesn't let you keep using them for more calculations.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "387"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f195054%2fwhy-is-this-code-so-slow%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I recommend you learn the distinction between immediate (=
) and delayed (:=
) assignments. They make the difference between slow and fast code here. Start with this tutorial or this book chapter, then look at memoization.
s = 0.3405;
e = 1.6539*10^-21;
u[0] = 0.;
u[1] = 0.1;
A[r_] = Piecewise[{{r - 2.5 s - 48*e*s^12*r^-13 + 24*e*s^6*r^-7, r > 2.5 s},
{-48*e*s^12*r^-13 + 24*e*s^6*r^-7, s <= r <= 2.5 s},
{r - s - 24*e*s^-1, r < s}}];
u[i_] := u[i] = x /. FindRoot[
u[i - 1] + 1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) - 0.9 A[x] == x, {x, 1.}]
Array[u, 100]
{0.1, 1.77164, 1.37065, 1.04259, 0.887781, 0.708344, 0.59461,
0.457228, 0.367364, 0.296071, 0.256104, 0.20463, 0.208487, 1.20917,
1.04197, 0.939331, 0.879865, 0.827963, 0.774591, 0.72775, 0.67934,
0.63666, 0.592369, 0.553172, 0.512352, 0.476112, 0.438261, 0.404563,
0.369277, 0.339073, 0.321616, 0.301118, 0.296195, 0.224688, 0.273538,
0.31357, 0.33593, 0.366902, 0.38813, 0.417572, 0.437777, 0.465834,
0.48511, 0.511907, 0.530336, 0.55598, 0.573633, 0.598219, 0.615159,
0.638772, 0.655054, 0.677768, 0.693441, 0.715321, 0.73043, 0.751535,
0.766118, 0.786503, 0.800596, 0.820306, 0.833941, 0.852182, 0.85901,
0.874152, 0.871531, 0.78396, 0.781416, 0.696402, 0.693931, 0.611329,
0.608927, 0.528603, 0.526267, 0.448099, 0.445825, 0.369701, 0.367485,
0.315658, 0.325798, 0.341207, 0.351098, 0.366134, 0.375788, 0.390468,
0.399897, 0.414237, 0.42345, 0.437466, 0.446473, 0.46018, 0.46899,
0.4824, 0.491022, 0.504149, 0.51259, 0.525444, 0.533712, 0.546306,
0.554408, 0.56675}
(takes about 5 seconds)
Alternatively, use
Table[u[i], {i, 1, 100}]
(same result). Your combination of For
and Print
shows the results but doesn't let you keep using them for more calculations.
$endgroup$
add a comment |
$begingroup$
I recommend you learn the distinction between immediate (=
) and delayed (:=
) assignments. They make the difference between slow and fast code here. Start with this tutorial or this book chapter, then look at memoization.
s = 0.3405;
e = 1.6539*10^-21;
u[0] = 0.;
u[1] = 0.1;
A[r_] = Piecewise[{{r - 2.5 s - 48*e*s^12*r^-13 + 24*e*s^6*r^-7, r > 2.5 s},
{-48*e*s^12*r^-13 + 24*e*s^6*r^-7, s <= r <= 2.5 s},
{r - s - 24*e*s^-1, r < s}}];
u[i_] := u[i] = x /. FindRoot[
u[i - 1] + 1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) - 0.9 A[x] == x, {x, 1.}]
Array[u, 100]
{0.1, 1.77164, 1.37065, 1.04259, 0.887781, 0.708344, 0.59461,
0.457228, 0.367364, 0.296071, 0.256104, 0.20463, 0.208487, 1.20917,
1.04197, 0.939331, 0.879865, 0.827963, 0.774591, 0.72775, 0.67934,
0.63666, 0.592369, 0.553172, 0.512352, 0.476112, 0.438261, 0.404563,
0.369277, 0.339073, 0.321616, 0.301118, 0.296195, 0.224688, 0.273538,
0.31357, 0.33593, 0.366902, 0.38813, 0.417572, 0.437777, 0.465834,
0.48511, 0.511907, 0.530336, 0.55598, 0.573633, 0.598219, 0.615159,
0.638772, 0.655054, 0.677768, 0.693441, 0.715321, 0.73043, 0.751535,
0.766118, 0.786503, 0.800596, 0.820306, 0.833941, 0.852182, 0.85901,
0.874152, 0.871531, 0.78396, 0.781416, 0.696402, 0.693931, 0.611329,
0.608927, 0.528603, 0.526267, 0.448099, 0.445825, 0.369701, 0.367485,
0.315658, 0.325798, 0.341207, 0.351098, 0.366134, 0.375788, 0.390468,
0.399897, 0.414237, 0.42345, 0.437466, 0.446473, 0.46018, 0.46899,
0.4824, 0.491022, 0.504149, 0.51259, 0.525444, 0.533712, 0.546306,
0.554408, 0.56675}
(takes about 5 seconds)
Alternatively, use
Table[u[i], {i, 1, 100}]
(same result). Your combination of For
and Print
shows the results but doesn't let you keep using them for more calculations.
$endgroup$
add a comment |
$begingroup$
I recommend you learn the distinction between immediate (=
) and delayed (:=
) assignments. They make the difference between slow and fast code here. Start with this tutorial or this book chapter, then look at memoization.
s = 0.3405;
e = 1.6539*10^-21;
u[0] = 0.;
u[1] = 0.1;
A[r_] = Piecewise[{{r - 2.5 s - 48*e*s^12*r^-13 + 24*e*s^6*r^-7, r > 2.5 s},
{-48*e*s^12*r^-13 + 24*e*s^6*r^-7, s <= r <= 2.5 s},
{r - s - 24*e*s^-1, r < s}}];
u[i_] := u[i] = x /. FindRoot[
u[i - 1] + 1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) - 0.9 A[x] == x, {x, 1.}]
Array[u, 100]
{0.1, 1.77164, 1.37065, 1.04259, 0.887781, 0.708344, 0.59461,
0.457228, 0.367364, 0.296071, 0.256104, 0.20463, 0.208487, 1.20917,
1.04197, 0.939331, 0.879865, 0.827963, 0.774591, 0.72775, 0.67934,
0.63666, 0.592369, 0.553172, 0.512352, 0.476112, 0.438261, 0.404563,
0.369277, 0.339073, 0.321616, 0.301118, 0.296195, 0.224688, 0.273538,
0.31357, 0.33593, 0.366902, 0.38813, 0.417572, 0.437777, 0.465834,
0.48511, 0.511907, 0.530336, 0.55598, 0.573633, 0.598219, 0.615159,
0.638772, 0.655054, 0.677768, 0.693441, 0.715321, 0.73043, 0.751535,
0.766118, 0.786503, 0.800596, 0.820306, 0.833941, 0.852182, 0.85901,
0.874152, 0.871531, 0.78396, 0.781416, 0.696402, 0.693931, 0.611329,
0.608927, 0.528603, 0.526267, 0.448099, 0.445825, 0.369701, 0.367485,
0.315658, 0.325798, 0.341207, 0.351098, 0.366134, 0.375788, 0.390468,
0.399897, 0.414237, 0.42345, 0.437466, 0.446473, 0.46018, 0.46899,
0.4824, 0.491022, 0.504149, 0.51259, 0.525444, 0.533712, 0.546306,
0.554408, 0.56675}
(takes about 5 seconds)
Alternatively, use
Table[u[i], {i, 1, 100}]
(same result). Your combination of For
and Print
shows the results but doesn't let you keep using them for more calculations.
$endgroup$
I recommend you learn the distinction between immediate (=
) and delayed (:=
) assignments. They make the difference between slow and fast code here. Start with this tutorial or this book chapter, then look at memoization.
s = 0.3405;
e = 1.6539*10^-21;
u[0] = 0.;
u[1] = 0.1;
A[r_] = Piecewise[{{r - 2.5 s - 48*e*s^12*r^-13 + 24*e*s^6*r^-7, r > 2.5 s},
{-48*e*s^12*r^-13 + 24*e*s^6*r^-7, s <= r <= 2.5 s},
{r - s - 24*e*s^-1, r < s}}];
u[i_] := u[i] = x /. FindRoot[
u[i - 1] + 1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) - 0.9 A[x] == x, {x, 1.}]
Array[u, 100]
{0.1, 1.77164, 1.37065, 1.04259, 0.887781, 0.708344, 0.59461,
0.457228, 0.367364, 0.296071, 0.256104, 0.20463, 0.208487, 1.20917,
1.04197, 0.939331, 0.879865, 0.827963, 0.774591, 0.72775, 0.67934,
0.63666, 0.592369, 0.553172, 0.512352, 0.476112, 0.438261, 0.404563,
0.369277, 0.339073, 0.321616, 0.301118, 0.296195, 0.224688, 0.273538,
0.31357, 0.33593, 0.366902, 0.38813, 0.417572, 0.437777, 0.465834,
0.48511, 0.511907, 0.530336, 0.55598, 0.573633, 0.598219, 0.615159,
0.638772, 0.655054, 0.677768, 0.693441, 0.715321, 0.73043, 0.751535,
0.766118, 0.786503, 0.800596, 0.820306, 0.833941, 0.852182, 0.85901,
0.874152, 0.871531, 0.78396, 0.781416, 0.696402, 0.693931, 0.611329,
0.608927, 0.528603, 0.526267, 0.448099, 0.445825, 0.369701, 0.367485,
0.315658, 0.325798, 0.341207, 0.351098, 0.366134, 0.375788, 0.390468,
0.399897, 0.414237, 0.42345, 0.437466, 0.446473, 0.46018, 0.46899,
0.4824, 0.491022, 0.504149, 0.51259, 0.525444, 0.533712, 0.546306,
0.554408, 0.56675}
(takes about 5 seconds)
Alternatively, use
Table[u[i], {i, 1, 100}]
(same result). Your combination of For
and Print
shows the results but doesn't let you keep using them for more calculations.
edited 1 hour ago
answered 1 hour ago
RomanRoman
5,11011130
5,11011130
add a comment |
add a comment |
Thanks for contributing an answer to Mathematica Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f195054%2fwhy-is-this-code-so-slow%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown