black dwarf stars and dark matter












1












$begingroup$


Today we understand that a black dwarf star represents a hypothetical star that is the result of the complete consumption of the energy of a white dwarf which is the remnant of a star of little or half mass (1 solar mass), once all its hydrogen has been consumed or expelled. This rest is a dense piece of "degenerated matter" that slowly cools and crystallizes by emission of heat radiation. So, if these objects (not yet observed) do not emit light but interact gravitationally with the surrounding matter, we can not say that dark matter may be black dwarf stars that are contained within the galactic halo? To discard weak interaction particles such as WIMP's or its opposite, the MACHO's ("massive compact halo objects")










share|cite|improve this question









$endgroup$












  • $begingroup$
    I'm pretty sure the "degenerated matter" of the black dwarf is still made of baryons, so it is not dark matter.
    $endgroup$
    – N. Steinle
    4 hours ago
















1












$begingroup$


Today we understand that a black dwarf star represents a hypothetical star that is the result of the complete consumption of the energy of a white dwarf which is the remnant of a star of little or half mass (1 solar mass), once all its hydrogen has been consumed or expelled. This rest is a dense piece of "degenerated matter" that slowly cools and crystallizes by emission of heat radiation. So, if these objects (not yet observed) do not emit light but interact gravitationally with the surrounding matter, we can not say that dark matter may be black dwarf stars that are contained within the galactic halo? To discard weak interaction particles such as WIMP's or its opposite, the MACHO's ("massive compact halo objects")










share|cite|improve this question









$endgroup$












  • $begingroup$
    I'm pretty sure the "degenerated matter" of the black dwarf is still made of baryons, so it is not dark matter.
    $endgroup$
    – N. Steinle
    4 hours ago














1












1








1





$begingroup$


Today we understand that a black dwarf star represents a hypothetical star that is the result of the complete consumption of the energy of a white dwarf which is the remnant of a star of little or half mass (1 solar mass), once all its hydrogen has been consumed or expelled. This rest is a dense piece of "degenerated matter" that slowly cools and crystallizes by emission of heat radiation. So, if these objects (not yet observed) do not emit light but interact gravitationally with the surrounding matter, we can not say that dark matter may be black dwarf stars that are contained within the galactic halo? To discard weak interaction particles such as WIMP's or its opposite, the MACHO's ("massive compact halo objects")










share|cite|improve this question









$endgroup$




Today we understand that a black dwarf star represents a hypothetical star that is the result of the complete consumption of the energy of a white dwarf which is the remnant of a star of little or half mass (1 solar mass), once all its hydrogen has been consumed or expelled. This rest is a dense piece of "degenerated matter" that slowly cools and crystallizes by emission of heat radiation. So, if these objects (not yet observed) do not emit light but interact gravitationally with the surrounding matter, we can not say that dark matter may be black dwarf stars that are contained within the galactic halo? To discard weak interaction particles such as WIMP's or its opposite, the MACHO's ("massive compact halo objects")







astrophysics astronomy dark-matter stars wimps






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 4 hours ago









jormansandovaljormansandoval

918719




918719












  • $begingroup$
    I'm pretty sure the "degenerated matter" of the black dwarf is still made of baryons, so it is not dark matter.
    $endgroup$
    – N. Steinle
    4 hours ago


















  • $begingroup$
    I'm pretty sure the "degenerated matter" of the black dwarf is still made of baryons, so it is not dark matter.
    $endgroup$
    – N. Steinle
    4 hours ago
















$begingroup$
I'm pretty sure the "degenerated matter" of the black dwarf is still made of baryons, so it is not dark matter.
$endgroup$
– N. Steinle
4 hours ago




$begingroup$
I'm pretty sure the "degenerated matter" of the black dwarf is still made of baryons, so it is not dark matter.
$endgroup$
– N. Steinle
4 hours ago










1 Answer
1






active

oldest

votes


















2












$begingroup$

Three reasons:




  1. As you correctly point out, black dwarfs are "hypothetical objects". There has been insufficient time since the first stars were born for white dwarfs to cool below about 3000 K. i.e. Whilst there are faint white dwarfs with luminosities below a few $10^{-5} L_{odot}$, they are not invisible.


  2. Microlensing experiments rule out "massive compact halo objects", like cold white dwarfs or black holes as a significant contributor to dark matter.


  3. Most of the dark matter needs to be non baryonic and to interact very weakly with normal matter in order to form the structures that we see today in the universe; and to reconcile the inferred primordial abundances of helium, deuterium and lithium with the total amount of matter deduced to be in galaxies and clusters of galaxies. Cold white dwarfs are baryonic, so cannot represent the bulk of dark matter.







share|cite|improve this answer









$endgroup$














    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "151"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f471183%2fblack-dwarf-stars-and-dark-matter%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    Three reasons:




    1. As you correctly point out, black dwarfs are "hypothetical objects". There has been insufficient time since the first stars were born for white dwarfs to cool below about 3000 K. i.e. Whilst there are faint white dwarfs with luminosities below a few $10^{-5} L_{odot}$, they are not invisible.


    2. Microlensing experiments rule out "massive compact halo objects", like cold white dwarfs or black holes as a significant contributor to dark matter.


    3. Most of the dark matter needs to be non baryonic and to interact very weakly with normal matter in order to form the structures that we see today in the universe; and to reconcile the inferred primordial abundances of helium, deuterium and lithium with the total amount of matter deduced to be in galaxies and clusters of galaxies. Cold white dwarfs are baryonic, so cannot represent the bulk of dark matter.







    share|cite|improve this answer









    $endgroup$


















      2












      $begingroup$

      Three reasons:




      1. As you correctly point out, black dwarfs are "hypothetical objects". There has been insufficient time since the first stars were born for white dwarfs to cool below about 3000 K. i.e. Whilst there are faint white dwarfs with luminosities below a few $10^{-5} L_{odot}$, they are not invisible.


      2. Microlensing experiments rule out "massive compact halo objects", like cold white dwarfs or black holes as a significant contributor to dark matter.


      3. Most of the dark matter needs to be non baryonic and to interact very weakly with normal matter in order to form the structures that we see today in the universe; and to reconcile the inferred primordial abundances of helium, deuterium and lithium with the total amount of matter deduced to be in galaxies and clusters of galaxies. Cold white dwarfs are baryonic, so cannot represent the bulk of dark matter.







      share|cite|improve this answer









      $endgroup$
















        2












        2








        2





        $begingroup$

        Three reasons:




        1. As you correctly point out, black dwarfs are "hypothetical objects". There has been insufficient time since the first stars were born for white dwarfs to cool below about 3000 K. i.e. Whilst there are faint white dwarfs with luminosities below a few $10^{-5} L_{odot}$, they are not invisible.


        2. Microlensing experiments rule out "massive compact halo objects", like cold white dwarfs or black holes as a significant contributor to dark matter.


        3. Most of the dark matter needs to be non baryonic and to interact very weakly with normal matter in order to form the structures that we see today in the universe; and to reconcile the inferred primordial abundances of helium, deuterium and lithium with the total amount of matter deduced to be in galaxies and clusters of galaxies. Cold white dwarfs are baryonic, so cannot represent the bulk of dark matter.







        share|cite|improve this answer









        $endgroup$



        Three reasons:




        1. As you correctly point out, black dwarfs are "hypothetical objects". There has been insufficient time since the first stars were born for white dwarfs to cool below about 3000 K. i.e. Whilst there are faint white dwarfs with luminosities below a few $10^{-5} L_{odot}$, they are not invisible.


        2. Microlensing experiments rule out "massive compact halo objects", like cold white dwarfs or black holes as a significant contributor to dark matter.


        3. Most of the dark matter needs to be non baryonic and to interact very weakly with normal matter in order to form the structures that we see today in the universe; and to reconcile the inferred primordial abundances of helium, deuterium and lithium with the total amount of matter deduced to be in galaxies and clusters of galaxies. Cold white dwarfs are baryonic, so cannot represent the bulk of dark matter.








        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 4 hours ago









        Rob JeffriesRob Jeffries

        70.3k7142243




        70.3k7142243






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Physics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f471183%2fblack-dwarf-stars-and-dark-matter%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Сан-Квентин

            8-я гвардейская общевойсковая армия

            Алькесар