Why does the rear of my vehicle sink when I apply the handbrake on a downward gradient?
This is something that I've always wondered. I'm no mechanic (web developer, actually) with very basic knowledge of vehicle mechanics so I can only guess at something like brake pipe pressure being involved, but that's about as far as I could guess. I can't find any article on the subject either, though I admit it's quite a niche question.
Case in point; I'm leaving the motorway via a downhill off-ramp and come to a stop in the queue using the foot brake (still downhill) - I shift into neutral, apply the handbrake and release the foot brake. As I release the foot brake the rear of the car sinks, as though the suspension was being elevated by the foot brake, though I've no idea how this is possible.
I apologise in advanced if this is rudimentary to those versed in vehicle mechanics and may be obvious. I've come to the assumption that it's normal behaviour and not an issue, but I can't remember whether or not this occurred with my previous two cars.
If it's relevant, here's my vehicle information:
Citroen Xsara Picasso Exclusive, 2006 (06),
1.6 HDI (Diesel) - 92HP,
Manual Transmission
manual-transmission handbrake stopping
New contributor
add a comment |
This is something that I've always wondered. I'm no mechanic (web developer, actually) with very basic knowledge of vehicle mechanics so I can only guess at something like brake pipe pressure being involved, but that's about as far as I could guess. I can't find any article on the subject either, though I admit it's quite a niche question.
Case in point; I'm leaving the motorway via a downhill off-ramp and come to a stop in the queue using the foot brake (still downhill) - I shift into neutral, apply the handbrake and release the foot brake. As I release the foot brake the rear of the car sinks, as though the suspension was being elevated by the foot brake, though I've no idea how this is possible.
I apologise in advanced if this is rudimentary to those versed in vehicle mechanics and may be obvious. I've come to the assumption that it's normal behaviour and not an issue, but I can't remember whether or not this occurred with my previous two cars.
If it's relevant, here's my vehicle information:
Citroen Xsara Picasso Exclusive, 2006 (06),
1.6 HDI (Diesel) - 92HP,
Manual Transmission
manual-transmission handbrake stopping
New contributor
add a comment |
This is something that I've always wondered. I'm no mechanic (web developer, actually) with very basic knowledge of vehicle mechanics so I can only guess at something like brake pipe pressure being involved, but that's about as far as I could guess. I can't find any article on the subject either, though I admit it's quite a niche question.
Case in point; I'm leaving the motorway via a downhill off-ramp and come to a stop in the queue using the foot brake (still downhill) - I shift into neutral, apply the handbrake and release the foot brake. As I release the foot brake the rear of the car sinks, as though the suspension was being elevated by the foot brake, though I've no idea how this is possible.
I apologise in advanced if this is rudimentary to those versed in vehicle mechanics and may be obvious. I've come to the assumption that it's normal behaviour and not an issue, but I can't remember whether or not this occurred with my previous two cars.
If it's relevant, here's my vehicle information:
Citroen Xsara Picasso Exclusive, 2006 (06),
1.6 HDI (Diesel) - 92HP,
Manual Transmission
manual-transmission handbrake stopping
New contributor
This is something that I've always wondered. I'm no mechanic (web developer, actually) with very basic knowledge of vehicle mechanics so I can only guess at something like brake pipe pressure being involved, but that's about as far as I could guess. I can't find any article on the subject either, though I admit it's quite a niche question.
Case in point; I'm leaving the motorway via a downhill off-ramp and come to a stop in the queue using the foot brake (still downhill) - I shift into neutral, apply the handbrake and release the foot brake. As I release the foot brake the rear of the car sinks, as though the suspension was being elevated by the foot brake, though I've no idea how this is possible.
I apologise in advanced if this is rudimentary to those versed in vehicle mechanics and may be obvious. I've come to the assumption that it's normal behaviour and not an issue, but I can't remember whether or not this occurred with my previous two cars.
If it's relevant, here's my vehicle information:
Citroen Xsara Picasso Exclusive, 2006 (06),
1.6 HDI (Diesel) - 92HP,
Manual Transmission
manual-transmission handbrake stopping
manual-transmission handbrake stopping
New contributor
New contributor
edited 16 hours ago
motosubatsu
4,2551826
4,2551826
New contributor
asked 17 hours ago
Kallum TantonKallum Tanton
14315
14315
New contributor
New contributor
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
When you stop the car using the footbrake, all four wheels are held stationary by the brake. When you apply the handbrake, this locks the rear wheels only (in most cars) - as you then release the footbrake, this releases the front wheels, allowing them to turn ever so slightly. Gravity is still trying to pull the whole car downwards, and so it settles down on the rear suspension - it's something that's hard to describe!
1
Ah, that makes perfect sense and, while I agree that is difficult to describe, I understand you. I was thinking the suspension was expanded and was settling back to rest, however you've shown that it was at rest and the cars front moving forward slightly is actually compressing the rear suspension - if I've got that right! Thanks again.
– Kallum Tanton
17 hours ago
add a comment |
With the handbrake on, the rear wheel is not able to rotate. When the foot brake is released the car will try to move forward. This will cause a rotational force on the rear tire. Since the rear tire cannot turn, the rotational force will be transferred to the axle mounting point 'A' which will cause the road spring to compress, hence lowering the car body. If you did the same thing going up hill, you will find that the body raises instead.
8
The design of the rear is the main reason for this. Being on a swing arm causes the squat. Vehicles without this design, namely those with a solid 4-link or those with independent rear suspension (IRS) will not incur the "squat" you'd get here.
– Pᴀᴜʟsᴛᴇʀ2♦
15 hours ago
2
@Pᴀᴜʟsᴛᴇʀ2's comment is critical for this answer's explanation. I drive a pick-up and was confused when trying to think through this explanation in my head. (I was already confused by the question, but assumed it was just something I hadn't noticed before.)
– Zach Mierzejewski
12 hours ago
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "224"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Kallum Tanton is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmechanics.stackexchange.com%2fquestions%2f62812%2fwhy-does-the-rear-of-my-vehicle-sink-when-i-apply-the-handbrake-on-a-downward-gr%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
When you stop the car using the footbrake, all four wheels are held stationary by the brake. When you apply the handbrake, this locks the rear wheels only (in most cars) - as you then release the footbrake, this releases the front wheels, allowing them to turn ever so slightly. Gravity is still trying to pull the whole car downwards, and so it settles down on the rear suspension - it's something that's hard to describe!
1
Ah, that makes perfect sense and, while I agree that is difficult to describe, I understand you. I was thinking the suspension was expanded and was settling back to rest, however you've shown that it was at rest and the cars front moving forward slightly is actually compressing the rear suspension - if I've got that right! Thanks again.
– Kallum Tanton
17 hours ago
add a comment |
When you stop the car using the footbrake, all four wheels are held stationary by the brake. When you apply the handbrake, this locks the rear wheels only (in most cars) - as you then release the footbrake, this releases the front wheels, allowing them to turn ever so slightly. Gravity is still trying to pull the whole car downwards, and so it settles down on the rear suspension - it's something that's hard to describe!
1
Ah, that makes perfect sense and, while I agree that is difficult to describe, I understand you. I was thinking the suspension was expanded and was settling back to rest, however you've shown that it was at rest and the cars front moving forward slightly is actually compressing the rear suspension - if I've got that right! Thanks again.
– Kallum Tanton
17 hours ago
add a comment |
When you stop the car using the footbrake, all four wheels are held stationary by the brake. When you apply the handbrake, this locks the rear wheels only (in most cars) - as you then release the footbrake, this releases the front wheels, allowing them to turn ever so slightly. Gravity is still trying to pull the whole car downwards, and so it settles down on the rear suspension - it's something that's hard to describe!
When you stop the car using the footbrake, all four wheels are held stationary by the brake. When you apply the handbrake, this locks the rear wheels only (in most cars) - as you then release the footbrake, this releases the front wheels, allowing them to turn ever so slightly. Gravity is still trying to pull the whole car downwards, and so it settles down on the rear suspension - it's something that's hard to describe!
answered 17 hours ago
Nick C♦Nick C
25.4k44291
25.4k44291
1
Ah, that makes perfect sense and, while I agree that is difficult to describe, I understand you. I was thinking the suspension was expanded and was settling back to rest, however you've shown that it was at rest and the cars front moving forward slightly is actually compressing the rear suspension - if I've got that right! Thanks again.
– Kallum Tanton
17 hours ago
add a comment |
1
Ah, that makes perfect sense and, while I agree that is difficult to describe, I understand you. I was thinking the suspension was expanded and was settling back to rest, however you've shown that it was at rest and the cars front moving forward slightly is actually compressing the rear suspension - if I've got that right! Thanks again.
– Kallum Tanton
17 hours ago
1
1
Ah, that makes perfect sense and, while I agree that is difficult to describe, I understand you. I was thinking the suspension was expanded and was settling back to rest, however you've shown that it was at rest and the cars front moving forward slightly is actually compressing the rear suspension - if I've got that right! Thanks again.
– Kallum Tanton
17 hours ago
Ah, that makes perfect sense and, while I agree that is difficult to describe, I understand you. I was thinking the suspension was expanded and was settling back to rest, however you've shown that it was at rest and the cars front moving forward slightly is actually compressing the rear suspension - if I've got that right! Thanks again.
– Kallum Tanton
17 hours ago
add a comment |
With the handbrake on, the rear wheel is not able to rotate. When the foot brake is released the car will try to move forward. This will cause a rotational force on the rear tire. Since the rear tire cannot turn, the rotational force will be transferred to the axle mounting point 'A' which will cause the road spring to compress, hence lowering the car body. If you did the same thing going up hill, you will find that the body raises instead.
8
The design of the rear is the main reason for this. Being on a swing arm causes the squat. Vehicles without this design, namely those with a solid 4-link or those with independent rear suspension (IRS) will not incur the "squat" you'd get here.
– Pᴀᴜʟsᴛᴇʀ2♦
15 hours ago
2
@Pᴀᴜʟsᴛᴇʀ2's comment is critical for this answer's explanation. I drive a pick-up and was confused when trying to think through this explanation in my head. (I was already confused by the question, but assumed it was just something I hadn't noticed before.)
– Zach Mierzejewski
12 hours ago
add a comment |
With the handbrake on, the rear wheel is not able to rotate. When the foot brake is released the car will try to move forward. This will cause a rotational force on the rear tire. Since the rear tire cannot turn, the rotational force will be transferred to the axle mounting point 'A' which will cause the road spring to compress, hence lowering the car body. If you did the same thing going up hill, you will find that the body raises instead.
8
The design of the rear is the main reason for this. Being on a swing arm causes the squat. Vehicles without this design, namely those with a solid 4-link or those with independent rear suspension (IRS) will not incur the "squat" you'd get here.
– Pᴀᴜʟsᴛᴇʀ2♦
15 hours ago
2
@Pᴀᴜʟsᴛᴇʀ2's comment is critical for this answer's explanation. I drive a pick-up and was confused when trying to think through this explanation in my head. (I was already confused by the question, but assumed it was just something I hadn't noticed before.)
– Zach Mierzejewski
12 hours ago
add a comment |
With the handbrake on, the rear wheel is not able to rotate. When the foot brake is released the car will try to move forward. This will cause a rotational force on the rear tire. Since the rear tire cannot turn, the rotational force will be transferred to the axle mounting point 'A' which will cause the road spring to compress, hence lowering the car body. If you did the same thing going up hill, you will find that the body raises instead.
With the handbrake on, the rear wheel is not able to rotate. When the foot brake is released the car will try to move forward. This will cause a rotational force on the rear tire. Since the rear tire cannot turn, the rotational force will be transferred to the axle mounting point 'A' which will cause the road spring to compress, hence lowering the car body. If you did the same thing going up hill, you will find that the body raises instead.
answered 17 hours ago
HandyHowieHandyHowie
9,74011135
9,74011135
8
The design of the rear is the main reason for this. Being on a swing arm causes the squat. Vehicles without this design, namely those with a solid 4-link or those with independent rear suspension (IRS) will not incur the "squat" you'd get here.
– Pᴀᴜʟsᴛᴇʀ2♦
15 hours ago
2
@Pᴀᴜʟsᴛᴇʀ2's comment is critical for this answer's explanation. I drive a pick-up and was confused when trying to think through this explanation in my head. (I was already confused by the question, but assumed it was just something I hadn't noticed before.)
– Zach Mierzejewski
12 hours ago
add a comment |
8
The design of the rear is the main reason for this. Being on a swing arm causes the squat. Vehicles without this design, namely those with a solid 4-link or those with independent rear suspension (IRS) will not incur the "squat" you'd get here.
– Pᴀᴜʟsᴛᴇʀ2♦
15 hours ago
2
@Pᴀᴜʟsᴛᴇʀ2's comment is critical for this answer's explanation. I drive a pick-up and was confused when trying to think through this explanation in my head. (I was already confused by the question, but assumed it was just something I hadn't noticed before.)
– Zach Mierzejewski
12 hours ago
8
8
The design of the rear is the main reason for this. Being on a swing arm causes the squat. Vehicles without this design, namely those with a solid 4-link or those with independent rear suspension (IRS) will not incur the "squat" you'd get here.
– Pᴀᴜʟsᴛᴇʀ2♦
15 hours ago
The design of the rear is the main reason for this. Being on a swing arm causes the squat. Vehicles without this design, namely those with a solid 4-link or those with independent rear suspension (IRS) will not incur the "squat" you'd get here.
– Pᴀᴜʟsᴛᴇʀ2♦
15 hours ago
2
2
@Pᴀᴜʟsᴛᴇʀ2's comment is critical for this answer's explanation. I drive a pick-up and was confused when trying to think through this explanation in my head. (I was already confused by the question, but assumed it was just something I hadn't noticed before.)
– Zach Mierzejewski
12 hours ago
@Pᴀᴜʟsᴛᴇʀ2's comment is critical for this answer's explanation. I drive a pick-up and was confused when trying to think through this explanation in my head. (I was already confused by the question, but assumed it was just something I hadn't noticed before.)
– Zach Mierzejewski
12 hours ago
add a comment |
Kallum Tanton is a new contributor. Be nice, and check out our Code of Conduct.
Kallum Tanton is a new contributor. Be nice, and check out our Code of Conduct.
Kallum Tanton is a new contributor. Be nice, and check out our Code of Conduct.
Kallum Tanton is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Motor Vehicle Maintenance & Repair Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmechanics.stackexchange.com%2fquestions%2f62812%2fwhy-does-the-rear-of-my-vehicle-sink-when-i-apply-the-handbrake-on-a-downward-gr%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown