Setting the right white balance value












1















As I understand White Balancing means - making a particular color look as it should have been irrespective of what color the Ambient Light is.
i.e A white paper must look white not blueish grey(cool) or orangeish(hot).



So when taking a photo on my DSLR, what I see from the View Finder is same as what my eye naturally sees. However the final photos don't look good.



I assure you I am having the other settings fine.



As for the White Balance none of the following works perfectly:




  • Auto - In which case it is quite ordinary. I could get such a photo using a smart phone camera. Especially when it is indoors under a little dull light.

  • Preset - Again it does not serve the purpose of making the colors look as they were supposed to

  • Manual - If i am actually setting a color temperature such that a white object looks white to someone who looks at the photo taken, then the other things in the photo looks bad(un-natural). Basically the photo is ruined all together.


So my question is




What should I use as a rule to get it right?




Because when I checked few of the videos on Youtube - They mostly start at a certain value, take the photo, check it and keep increasing or decreasing the temperature and stop at a place where they feel it is right or best (I have no idea how to know what is best)










share|improve this question









New contributor




Housefly is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





















  • Can you perhaps explain a bit more - what do you mean by 'ordinary'? Also, in your description of manual white balance, I am unclear as to what 'then the other things in the photo looks back' means. Do you mean black? If so, how are your metering these shots? Uploading a few example photos could be really helpful, too.

    – Alexandra
    19 hours ago











  • @Alexandra Edited the question

    – Housefly
    19 hours ago
















1















As I understand White Balancing means - making a particular color look as it should have been irrespective of what color the Ambient Light is.
i.e A white paper must look white not blueish grey(cool) or orangeish(hot).



So when taking a photo on my DSLR, what I see from the View Finder is same as what my eye naturally sees. However the final photos don't look good.



I assure you I am having the other settings fine.



As for the White Balance none of the following works perfectly:




  • Auto - In which case it is quite ordinary. I could get such a photo using a smart phone camera. Especially when it is indoors under a little dull light.

  • Preset - Again it does not serve the purpose of making the colors look as they were supposed to

  • Manual - If i am actually setting a color temperature such that a white object looks white to someone who looks at the photo taken, then the other things in the photo looks bad(un-natural). Basically the photo is ruined all together.


So my question is




What should I use as a rule to get it right?




Because when I checked few of the videos on Youtube - They mostly start at a certain value, take the photo, check it and keep increasing or decreasing the temperature and stop at a place where they feel it is right or best (I have no idea how to know what is best)










share|improve this question









New contributor




Housefly is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





















  • Can you perhaps explain a bit more - what do you mean by 'ordinary'? Also, in your description of manual white balance, I am unclear as to what 'then the other things in the photo looks back' means. Do you mean black? If so, how are your metering these shots? Uploading a few example photos could be really helpful, too.

    – Alexandra
    19 hours ago











  • @Alexandra Edited the question

    – Housefly
    19 hours ago














1












1








1


1






As I understand White Balancing means - making a particular color look as it should have been irrespective of what color the Ambient Light is.
i.e A white paper must look white not blueish grey(cool) or orangeish(hot).



So when taking a photo on my DSLR, what I see from the View Finder is same as what my eye naturally sees. However the final photos don't look good.



I assure you I am having the other settings fine.



As for the White Balance none of the following works perfectly:




  • Auto - In which case it is quite ordinary. I could get such a photo using a smart phone camera. Especially when it is indoors under a little dull light.

  • Preset - Again it does not serve the purpose of making the colors look as they were supposed to

  • Manual - If i am actually setting a color temperature such that a white object looks white to someone who looks at the photo taken, then the other things in the photo looks bad(un-natural). Basically the photo is ruined all together.


So my question is




What should I use as a rule to get it right?




Because when I checked few of the videos on Youtube - They mostly start at a certain value, take the photo, check it and keep increasing or decreasing the temperature and stop at a place where they feel it is right or best (I have no idea how to know what is best)










share|improve this question









New contributor




Housefly is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.












As I understand White Balancing means - making a particular color look as it should have been irrespective of what color the Ambient Light is.
i.e A white paper must look white not blueish grey(cool) or orangeish(hot).



So when taking a photo on my DSLR, what I see from the View Finder is same as what my eye naturally sees. However the final photos don't look good.



I assure you I am having the other settings fine.



As for the White Balance none of the following works perfectly:




  • Auto - In which case it is quite ordinary. I could get such a photo using a smart phone camera. Especially when it is indoors under a little dull light.

  • Preset - Again it does not serve the purpose of making the colors look as they were supposed to

  • Manual - If i am actually setting a color temperature such that a white object looks white to someone who looks at the photo taken, then the other things in the photo looks bad(un-natural). Basically the photo is ruined all together.


So my question is




What should I use as a rule to get it right?




Because when I checked few of the videos on Youtube - They mostly start at a certain value, take the photo, check it and keep increasing or decreasing the temperature and stop at a place where they feel it is right or best (I have no idea how to know what is best)







dslr white-balance






share|improve this question









New contributor




Housefly is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|improve this question









New contributor




Housefly is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this question




share|improve this question








edited 19 hours ago







Housefly













New contributor




Housefly is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 19 hours ago









HouseflyHousefly

1062




1062




New contributor




Housefly is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Housefly is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Housefly is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.













  • Can you perhaps explain a bit more - what do you mean by 'ordinary'? Also, in your description of manual white balance, I am unclear as to what 'then the other things in the photo looks back' means. Do you mean black? If so, how are your metering these shots? Uploading a few example photos could be really helpful, too.

    – Alexandra
    19 hours ago











  • @Alexandra Edited the question

    – Housefly
    19 hours ago



















  • Can you perhaps explain a bit more - what do you mean by 'ordinary'? Also, in your description of manual white balance, I am unclear as to what 'then the other things in the photo looks back' means. Do you mean black? If so, how are your metering these shots? Uploading a few example photos could be really helpful, too.

    – Alexandra
    19 hours ago











  • @Alexandra Edited the question

    – Housefly
    19 hours ago

















Can you perhaps explain a bit more - what do you mean by 'ordinary'? Also, in your description of manual white balance, I am unclear as to what 'then the other things in the photo looks back' means. Do you mean black? If so, how are your metering these shots? Uploading a few example photos could be really helpful, too.

– Alexandra
19 hours ago





Can you perhaps explain a bit more - what do you mean by 'ordinary'? Also, in your description of manual white balance, I am unclear as to what 'then the other things in the photo looks back' means. Do you mean black? If so, how are your metering these shots? Uploading a few example photos could be really helpful, too.

– Alexandra
19 hours ago













@Alexandra Edited the question

– Housefly
19 hours ago





@Alexandra Edited the question

– Housefly
19 hours ago










3 Answers
3






active

oldest

votes


















7














First, realize that "color temperature" is but one axis that runs from amber to blue. Most natural light sources fall fairly close to the color temperature scale, expressed in kelvin, because the color of a black body radiator is determined by its actual temperature. Stars are black body radiators. So are very hot metals.



In the modern world, though, we deal with a lot of light sources that are not natural and do not fall on the Kelvin scale. The axis that is more or less perpendicular to the color temperature axis is the Magenta ←→ Green axis. This is often called a "tint" or "hue" adjustment. Many artificial light sources, particularly those designed primarily to use low amounts of energy, are quite a distance away from the colors emitted by black body radiators on the Blue ←→ Amber color temperature axis.



So in addition to adjusting color temperature to compensate for our light source, we must also compensate along the tint axis. Many cameras call this white balance correction.



For instance, in addition to having a color temperature of about 3700 K, traditional fluorescent bulbs also emit a green tint along the green←→magenta axis and need correction in the magenta direction. On the other hand, many of the popular LED stage lights found in small clubs are also at about 3700 K but have a decidedly magenta tint that requires compensation in the green direction along the green←→magenta axis. Both types of light are the same basic color temperature but look very different without compensation on the green←→magenta axis that is approximately perpendicular to the blue←→amber color temperature axis.



I've found that when used properly the in-camera White Balance Correction works pretty well the Canon cameras I use.



With my Canon cameras, each unit of WB adjustment is approximately equal to a 5 mired color correction filter. So a G9 setting is equivalent a 45 mireds green filter (magenta reduction). That's a pretty wide range of adjustment. If the light in which you are shooting exceeds that, then actual gels placed on the lighting might be the next option. In practice, I've usually found that even if a +9 setting in whichever direction(s) I need doesn't get me all the way there, it gets close enough to use an HSL tool in post to pull back the remaining color cast.



WB correction screen



Using a correctly colored gel on light sources or glass color filters in front of the lens can allow you to increase the exposure before the strongest channel blows out. This even works when one is shooting to produce monochrome images. Unfortunately most gels are oriented on the blue/purple←→amber axis. Sometimes what you need, say with typical LED stage lighting, is usually a strong green filter to attenuate magenta.



When shooting in such unbalanced light it is particularly important to pay attention to an RGB histogram, rather than a total luminance histogram. The single histogram can fool you into thinking nothing is being overexposed even when, in fact, one channel is being fully saturated. Using the separate red, green, and blue histograms will show very clearly when one channel is much brighter than the others. One channel at full saturation can also make correctly focused images look blurry. Keep in mind that if shooting raw you have a stop or two of headroom beyond what the in-camera histogram, based on the camera generated jpeg preview image, is showing you.



Be aware that when shooting raw the correction will be applied to the jpeg preview, but may or may not be applied by a raw conversion application that you use to open the raw file. Most manufacturer's in house software will apply the in camera setting by default. Most third party raw converters, such as Adobe products that use Adobe Camera Raw, do not.



The further the lights you are using are from the axis along which black body radiators emit (the color temperature axis), the more likely you'll need very fine and customized color corrections. In camera adjustments are fairly coarse compared to what can be done with a good raw conversion application. For instance, in camera WB correction with Canon cameras is limited to integer values (i.e. 1, 2, 3, etc.). In Canon's Digital Photo Professional 4 the gradations are in tenths (i.e. 1.0, 1.1, 1.2, 1.3, etc.). Physical filters are even more limited in terms of the steps between conventional choices.



Beyond doing color correction in two dimensions instead of just one, there's also the issue that many artificial light sources don't emit the full spectrum of visible light.



Most natural light sources do. The sun may be centered on about 5500 K, but there is a little bit of the entire visible spectrum in sunlight. That's generally because the black body radiator is not the exact same temperature over the entire surface that is emitting light. It's also because the Earth's atmosphere absorbs some of the energy radiated by our sun, and lets what we call visible light pass more easily. (Of course the reason we call it "visible light" is because we have evolved to be visually sensitive to the wavelengths of electromagnetic radiation that the atmosphere we evolved in allows to pass most easily!)



With artificial light sources that do not give a broad spectrum of light, there are certain colors we can't reproduce. This is because there is no light the proper wavelength(s) to reflect off our subject for that color. Custom White Balances come in very handy for such lighting. In such cases, we might also have to use an HSL (Hue-Saturation-Luminance) tool in post processing to remove a color cast.




What should I use as a rule to get it right?




Use calibrated test targets, either of various shades of gray or a full color calibration test chart. You can set in-camera "Custom White Balance" with a gray card that will usually get pretty close. The more exotic color test cards require using software installed on your computer to set a color profile to correct for the colors of the test card.



Ultimately, with limited spectrum light sources, you may need to add light of your own to fill the gaps.



For further reading:



How to cancel purple stage lighting on subjects?
Relationship between tint-temp and magenta-green-blue-amber white balance corrections?
How do I get good colors when taking pictures in the city at night?
How to get the most out of low-level monochromatic light?
How does the colour of ambient lighting affect colour rendition?



RAW files store 3 colors per pixel, or only one?
What *exactly* is white balance?






share|improve this answer

































    2














    Well first of all if you shoot in RAW then you can tweak this process in postprocess, but I believe you're already know that.



    A White Balance is a way of saying what is a dominant light colour in the scene. This has nothing to do with "look right" or "correct". It says exactly what I stated. When you shoot outside then dominant light is sun that has it's own characteristic base on time of a day and clouds setup. Yet in the scene there might be more light sources with different colour that affects only parts of the object you try to photography which leads to colour casts. Keep in mind that if you light a person standing on grass around green trees, apart from a sunlight you will also have a green reflected light bounced from many sources.



    If you want to help you DSLR you can simply have a greycard shoot and set WB for that specific WB, but this will not solve problem I mention before - this will only affect WB for a whole scene.



    Last thing - many photographer chasing correct WB as a way to go, to learn that in fact they don't want have correct WB, just pleasing colours. That's a bigger topic and usually involves lot of changes into the colours itself.






    share|improve this answer








    New contributor




    Paweł Witkowski Photography is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.




























      0














      White Balance – Its purpose is neutralizing a color cast prompted by off-color illumination. In other words, if the source does not output truly white light, likely the recorded image will be off as to tint. The auto white balance logic evaluates the overall scene and attempts to neutralize off-tints. This works most of the time but sometimes the results are not that desirable.



      Let me add that the color balance of the final image, as viewed, can be biased by the output of the viewing media. As an example, the computer monitor might add a bias and paper prints of this image might be biased because the printing system is not optimized. You should consider using your image editing software to make the final tweak.



      That being said, you can switch to a manual white balance as this setting, used properly can achieve a better outcome. You can pre-set the white balance based on your observation, i.e. the vista is lit by tungsten or florescent lamps or the principle subject is in deep shade. In other words, your camera’s white balance has several pre-set illumination conditions.



      One peculiarity of white balance is the Kelvin scale of temperature/color. Science has discovered that the color of illuminates can associated with and classified by the temperature heated and thus glowing articles. We can heat a metal poker till it glows faint red. Elevate the temperature and the glowing color shifts dark-red, cherry-red, orange, yellow, yellow-white, white, blue-white. The photo industry correlates the color of the illuminate in use to the temperature of a glowing standard body.



      Lit match = 1700K – Candle = 1850K – Standard 60W tungsten bulb = 2400K – Studio Tungsten bulb = 3200K – Daylight = 5500K – Daylight overcast = 6500K.



      Note the temperate scale use is the Kalvin Scale. This is the common Celsius Scale + 273. Seems an odd scale but many scientist prefer because this scale avoids the use of negative temperatures that no confusion -10C with +10C – and there are more reasons why Kalvin not Celsius or Fahrenheit.






      share|improve this answer























        Your Answer








        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "61"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: false,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: null,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });






        Housefly is a new contributor. Be nice, and check out our Code of Conduct.










        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphoto.stackexchange.com%2fquestions%2f104333%2fsetting-the-right-white-balance-value%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        7














        First, realize that "color temperature" is but one axis that runs from amber to blue. Most natural light sources fall fairly close to the color temperature scale, expressed in kelvin, because the color of a black body radiator is determined by its actual temperature. Stars are black body radiators. So are very hot metals.



        In the modern world, though, we deal with a lot of light sources that are not natural and do not fall on the Kelvin scale. The axis that is more or less perpendicular to the color temperature axis is the Magenta ←→ Green axis. This is often called a "tint" or "hue" adjustment. Many artificial light sources, particularly those designed primarily to use low amounts of energy, are quite a distance away from the colors emitted by black body radiators on the Blue ←→ Amber color temperature axis.



        So in addition to adjusting color temperature to compensate for our light source, we must also compensate along the tint axis. Many cameras call this white balance correction.



        For instance, in addition to having a color temperature of about 3700 K, traditional fluorescent bulbs also emit a green tint along the green←→magenta axis and need correction in the magenta direction. On the other hand, many of the popular LED stage lights found in small clubs are also at about 3700 K but have a decidedly magenta tint that requires compensation in the green direction along the green←→magenta axis. Both types of light are the same basic color temperature but look very different without compensation on the green←→magenta axis that is approximately perpendicular to the blue←→amber color temperature axis.



        I've found that when used properly the in-camera White Balance Correction works pretty well the Canon cameras I use.



        With my Canon cameras, each unit of WB adjustment is approximately equal to a 5 mired color correction filter. So a G9 setting is equivalent a 45 mireds green filter (magenta reduction). That's a pretty wide range of adjustment. If the light in which you are shooting exceeds that, then actual gels placed on the lighting might be the next option. In practice, I've usually found that even if a +9 setting in whichever direction(s) I need doesn't get me all the way there, it gets close enough to use an HSL tool in post to pull back the remaining color cast.



        WB correction screen



        Using a correctly colored gel on light sources or glass color filters in front of the lens can allow you to increase the exposure before the strongest channel blows out. This even works when one is shooting to produce monochrome images. Unfortunately most gels are oriented on the blue/purple←→amber axis. Sometimes what you need, say with typical LED stage lighting, is usually a strong green filter to attenuate magenta.



        When shooting in such unbalanced light it is particularly important to pay attention to an RGB histogram, rather than a total luminance histogram. The single histogram can fool you into thinking nothing is being overexposed even when, in fact, one channel is being fully saturated. Using the separate red, green, and blue histograms will show very clearly when one channel is much brighter than the others. One channel at full saturation can also make correctly focused images look blurry. Keep in mind that if shooting raw you have a stop or two of headroom beyond what the in-camera histogram, based on the camera generated jpeg preview image, is showing you.



        Be aware that when shooting raw the correction will be applied to the jpeg preview, but may or may not be applied by a raw conversion application that you use to open the raw file. Most manufacturer's in house software will apply the in camera setting by default. Most third party raw converters, such as Adobe products that use Adobe Camera Raw, do not.



        The further the lights you are using are from the axis along which black body radiators emit (the color temperature axis), the more likely you'll need very fine and customized color corrections. In camera adjustments are fairly coarse compared to what can be done with a good raw conversion application. For instance, in camera WB correction with Canon cameras is limited to integer values (i.e. 1, 2, 3, etc.). In Canon's Digital Photo Professional 4 the gradations are in tenths (i.e. 1.0, 1.1, 1.2, 1.3, etc.). Physical filters are even more limited in terms of the steps between conventional choices.



        Beyond doing color correction in two dimensions instead of just one, there's also the issue that many artificial light sources don't emit the full spectrum of visible light.



        Most natural light sources do. The sun may be centered on about 5500 K, but there is a little bit of the entire visible spectrum in sunlight. That's generally because the black body radiator is not the exact same temperature over the entire surface that is emitting light. It's also because the Earth's atmosphere absorbs some of the energy radiated by our sun, and lets what we call visible light pass more easily. (Of course the reason we call it "visible light" is because we have evolved to be visually sensitive to the wavelengths of electromagnetic radiation that the atmosphere we evolved in allows to pass most easily!)



        With artificial light sources that do not give a broad spectrum of light, there are certain colors we can't reproduce. This is because there is no light the proper wavelength(s) to reflect off our subject for that color. Custom White Balances come in very handy for such lighting. In such cases, we might also have to use an HSL (Hue-Saturation-Luminance) tool in post processing to remove a color cast.




        What should I use as a rule to get it right?




        Use calibrated test targets, either of various shades of gray or a full color calibration test chart. You can set in-camera "Custom White Balance" with a gray card that will usually get pretty close. The more exotic color test cards require using software installed on your computer to set a color profile to correct for the colors of the test card.



        Ultimately, with limited spectrum light sources, you may need to add light of your own to fill the gaps.



        For further reading:



        How to cancel purple stage lighting on subjects?
        Relationship between tint-temp and magenta-green-blue-amber white balance corrections?
        How do I get good colors when taking pictures in the city at night?
        How to get the most out of low-level monochromatic light?
        How does the colour of ambient lighting affect colour rendition?



        RAW files store 3 colors per pixel, or only one?
        What *exactly* is white balance?






        share|improve this answer






























          7














          First, realize that "color temperature" is but one axis that runs from amber to blue. Most natural light sources fall fairly close to the color temperature scale, expressed in kelvin, because the color of a black body radiator is determined by its actual temperature. Stars are black body radiators. So are very hot metals.



          In the modern world, though, we deal with a lot of light sources that are not natural and do not fall on the Kelvin scale. The axis that is more or less perpendicular to the color temperature axis is the Magenta ←→ Green axis. This is often called a "tint" or "hue" adjustment. Many artificial light sources, particularly those designed primarily to use low amounts of energy, are quite a distance away from the colors emitted by black body radiators on the Blue ←→ Amber color temperature axis.



          So in addition to adjusting color temperature to compensate for our light source, we must also compensate along the tint axis. Many cameras call this white balance correction.



          For instance, in addition to having a color temperature of about 3700 K, traditional fluorescent bulbs also emit a green tint along the green←→magenta axis and need correction in the magenta direction. On the other hand, many of the popular LED stage lights found in small clubs are also at about 3700 K but have a decidedly magenta tint that requires compensation in the green direction along the green←→magenta axis. Both types of light are the same basic color temperature but look very different without compensation on the green←→magenta axis that is approximately perpendicular to the blue←→amber color temperature axis.



          I've found that when used properly the in-camera White Balance Correction works pretty well the Canon cameras I use.



          With my Canon cameras, each unit of WB adjustment is approximately equal to a 5 mired color correction filter. So a G9 setting is equivalent a 45 mireds green filter (magenta reduction). That's a pretty wide range of adjustment. If the light in which you are shooting exceeds that, then actual gels placed on the lighting might be the next option. In practice, I've usually found that even if a +9 setting in whichever direction(s) I need doesn't get me all the way there, it gets close enough to use an HSL tool in post to pull back the remaining color cast.



          WB correction screen



          Using a correctly colored gel on light sources or glass color filters in front of the lens can allow you to increase the exposure before the strongest channel blows out. This even works when one is shooting to produce monochrome images. Unfortunately most gels are oriented on the blue/purple←→amber axis. Sometimes what you need, say with typical LED stage lighting, is usually a strong green filter to attenuate magenta.



          When shooting in such unbalanced light it is particularly important to pay attention to an RGB histogram, rather than a total luminance histogram. The single histogram can fool you into thinking nothing is being overexposed even when, in fact, one channel is being fully saturated. Using the separate red, green, and blue histograms will show very clearly when one channel is much brighter than the others. One channel at full saturation can also make correctly focused images look blurry. Keep in mind that if shooting raw you have a stop or two of headroom beyond what the in-camera histogram, based on the camera generated jpeg preview image, is showing you.



          Be aware that when shooting raw the correction will be applied to the jpeg preview, but may or may not be applied by a raw conversion application that you use to open the raw file. Most manufacturer's in house software will apply the in camera setting by default. Most third party raw converters, such as Adobe products that use Adobe Camera Raw, do not.



          The further the lights you are using are from the axis along which black body radiators emit (the color temperature axis), the more likely you'll need very fine and customized color corrections. In camera adjustments are fairly coarse compared to what can be done with a good raw conversion application. For instance, in camera WB correction with Canon cameras is limited to integer values (i.e. 1, 2, 3, etc.). In Canon's Digital Photo Professional 4 the gradations are in tenths (i.e. 1.0, 1.1, 1.2, 1.3, etc.). Physical filters are even more limited in terms of the steps between conventional choices.



          Beyond doing color correction in two dimensions instead of just one, there's also the issue that many artificial light sources don't emit the full spectrum of visible light.



          Most natural light sources do. The sun may be centered on about 5500 K, but there is a little bit of the entire visible spectrum in sunlight. That's generally because the black body radiator is not the exact same temperature over the entire surface that is emitting light. It's also because the Earth's atmosphere absorbs some of the energy radiated by our sun, and lets what we call visible light pass more easily. (Of course the reason we call it "visible light" is because we have evolved to be visually sensitive to the wavelengths of electromagnetic radiation that the atmosphere we evolved in allows to pass most easily!)



          With artificial light sources that do not give a broad spectrum of light, there are certain colors we can't reproduce. This is because there is no light the proper wavelength(s) to reflect off our subject for that color. Custom White Balances come in very handy for such lighting. In such cases, we might also have to use an HSL (Hue-Saturation-Luminance) tool in post processing to remove a color cast.




          What should I use as a rule to get it right?




          Use calibrated test targets, either of various shades of gray or a full color calibration test chart. You can set in-camera "Custom White Balance" with a gray card that will usually get pretty close. The more exotic color test cards require using software installed on your computer to set a color profile to correct for the colors of the test card.



          Ultimately, with limited spectrum light sources, you may need to add light of your own to fill the gaps.



          For further reading:



          How to cancel purple stage lighting on subjects?
          Relationship between tint-temp and magenta-green-blue-amber white balance corrections?
          How do I get good colors when taking pictures in the city at night?
          How to get the most out of low-level monochromatic light?
          How does the colour of ambient lighting affect colour rendition?



          RAW files store 3 colors per pixel, or only one?
          What *exactly* is white balance?






          share|improve this answer




























            7












            7








            7







            First, realize that "color temperature" is but one axis that runs from amber to blue. Most natural light sources fall fairly close to the color temperature scale, expressed in kelvin, because the color of a black body radiator is determined by its actual temperature. Stars are black body radiators. So are very hot metals.



            In the modern world, though, we deal with a lot of light sources that are not natural and do not fall on the Kelvin scale. The axis that is more or less perpendicular to the color temperature axis is the Magenta ←→ Green axis. This is often called a "tint" or "hue" adjustment. Many artificial light sources, particularly those designed primarily to use low amounts of energy, are quite a distance away from the colors emitted by black body radiators on the Blue ←→ Amber color temperature axis.



            So in addition to adjusting color temperature to compensate for our light source, we must also compensate along the tint axis. Many cameras call this white balance correction.



            For instance, in addition to having a color temperature of about 3700 K, traditional fluorescent bulbs also emit a green tint along the green←→magenta axis and need correction in the magenta direction. On the other hand, many of the popular LED stage lights found in small clubs are also at about 3700 K but have a decidedly magenta tint that requires compensation in the green direction along the green←→magenta axis. Both types of light are the same basic color temperature but look very different without compensation on the green←→magenta axis that is approximately perpendicular to the blue←→amber color temperature axis.



            I've found that when used properly the in-camera White Balance Correction works pretty well the Canon cameras I use.



            With my Canon cameras, each unit of WB adjustment is approximately equal to a 5 mired color correction filter. So a G9 setting is equivalent a 45 mireds green filter (magenta reduction). That's a pretty wide range of adjustment. If the light in which you are shooting exceeds that, then actual gels placed on the lighting might be the next option. In practice, I've usually found that even if a +9 setting in whichever direction(s) I need doesn't get me all the way there, it gets close enough to use an HSL tool in post to pull back the remaining color cast.



            WB correction screen



            Using a correctly colored gel on light sources or glass color filters in front of the lens can allow you to increase the exposure before the strongest channel blows out. This even works when one is shooting to produce monochrome images. Unfortunately most gels are oriented on the blue/purple←→amber axis. Sometimes what you need, say with typical LED stage lighting, is usually a strong green filter to attenuate magenta.



            When shooting in such unbalanced light it is particularly important to pay attention to an RGB histogram, rather than a total luminance histogram. The single histogram can fool you into thinking nothing is being overexposed even when, in fact, one channel is being fully saturated. Using the separate red, green, and blue histograms will show very clearly when one channel is much brighter than the others. One channel at full saturation can also make correctly focused images look blurry. Keep in mind that if shooting raw you have a stop or two of headroom beyond what the in-camera histogram, based on the camera generated jpeg preview image, is showing you.



            Be aware that when shooting raw the correction will be applied to the jpeg preview, but may or may not be applied by a raw conversion application that you use to open the raw file. Most manufacturer's in house software will apply the in camera setting by default. Most third party raw converters, such as Adobe products that use Adobe Camera Raw, do not.



            The further the lights you are using are from the axis along which black body radiators emit (the color temperature axis), the more likely you'll need very fine and customized color corrections. In camera adjustments are fairly coarse compared to what can be done with a good raw conversion application. For instance, in camera WB correction with Canon cameras is limited to integer values (i.e. 1, 2, 3, etc.). In Canon's Digital Photo Professional 4 the gradations are in tenths (i.e. 1.0, 1.1, 1.2, 1.3, etc.). Physical filters are even more limited in terms of the steps between conventional choices.



            Beyond doing color correction in two dimensions instead of just one, there's also the issue that many artificial light sources don't emit the full spectrum of visible light.



            Most natural light sources do. The sun may be centered on about 5500 K, but there is a little bit of the entire visible spectrum in sunlight. That's generally because the black body radiator is not the exact same temperature over the entire surface that is emitting light. It's also because the Earth's atmosphere absorbs some of the energy radiated by our sun, and lets what we call visible light pass more easily. (Of course the reason we call it "visible light" is because we have evolved to be visually sensitive to the wavelengths of electromagnetic radiation that the atmosphere we evolved in allows to pass most easily!)



            With artificial light sources that do not give a broad spectrum of light, there are certain colors we can't reproduce. This is because there is no light the proper wavelength(s) to reflect off our subject for that color. Custom White Balances come in very handy for such lighting. In such cases, we might also have to use an HSL (Hue-Saturation-Luminance) tool in post processing to remove a color cast.




            What should I use as a rule to get it right?




            Use calibrated test targets, either of various shades of gray or a full color calibration test chart. You can set in-camera "Custom White Balance" with a gray card that will usually get pretty close. The more exotic color test cards require using software installed on your computer to set a color profile to correct for the colors of the test card.



            Ultimately, with limited spectrum light sources, you may need to add light of your own to fill the gaps.



            For further reading:



            How to cancel purple stage lighting on subjects?
            Relationship between tint-temp and magenta-green-blue-amber white balance corrections?
            How do I get good colors when taking pictures in the city at night?
            How to get the most out of low-level monochromatic light?
            How does the colour of ambient lighting affect colour rendition?



            RAW files store 3 colors per pixel, or only one?
            What *exactly* is white balance?






            share|improve this answer















            First, realize that "color temperature" is but one axis that runs from amber to blue. Most natural light sources fall fairly close to the color temperature scale, expressed in kelvin, because the color of a black body radiator is determined by its actual temperature. Stars are black body radiators. So are very hot metals.



            In the modern world, though, we deal with a lot of light sources that are not natural and do not fall on the Kelvin scale. The axis that is more or less perpendicular to the color temperature axis is the Magenta ←→ Green axis. This is often called a "tint" or "hue" adjustment. Many artificial light sources, particularly those designed primarily to use low amounts of energy, are quite a distance away from the colors emitted by black body radiators on the Blue ←→ Amber color temperature axis.



            So in addition to adjusting color temperature to compensate for our light source, we must also compensate along the tint axis. Many cameras call this white balance correction.



            For instance, in addition to having a color temperature of about 3700 K, traditional fluorescent bulbs also emit a green tint along the green←→magenta axis and need correction in the magenta direction. On the other hand, many of the popular LED stage lights found in small clubs are also at about 3700 K but have a decidedly magenta tint that requires compensation in the green direction along the green←→magenta axis. Both types of light are the same basic color temperature but look very different without compensation on the green←→magenta axis that is approximately perpendicular to the blue←→amber color temperature axis.



            I've found that when used properly the in-camera White Balance Correction works pretty well the Canon cameras I use.



            With my Canon cameras, each unit of WB adjustment is approximately equal to a 5 mired color correction filter. So a G9 setting is equivalent a 45 mireds green filter (magenta reduction). That's a pretty wide range of adjustment. If the light in which you are shooting exceeds that, then actual gels placed on the lighting might be the next option. In practice, I've usually found that even if a +9 setting in whichever direction(s) I need doesn't get me all the way there, it gets close enough to use an HSL tool in post to pull back the remaining color cast.



            WB correction screen



            Using a correctly colored gel on light sources or glass color filters in front of the lens can allow you to increase the exposure before the strongest channel blows out. This even works when one is shooting to produce monochrome images. Unfortunately most gels are oriented on the blue/purple←→amber axis. Sometimes what you need, say with typical LED stage lighting, is usually a strong green filter to attenuate magenta.



            When shooting in such unbalanced light it is particularly important to pay attention to an RGB histogram, rather than a total luminance histogram. The single histogram can fool you into thinking nothing is being overexposed even when, in fact, one channel is being fully saturated. Using the separate red, green, and blue histograms will show very clearly when one channel is much brighter than the others. One channel at full saturation can also make correctly focused images look blurry. Keep in mind that if shooting raw you have a stop or two of headroom beyond what the in-camera histogram, based on the camera generated jpeg preview image, is showing you.



            Be aware that when shooting raw the correction will be applied to the jpeg preview, but may or may not be applied by a raw conversion application that you use to open the raw file. Most manufacturer's in house software will apply the in camera setting by default. Most third party raw converters, such as Adobe products that use Adobe Camera Raw, do not.



            The further the lights you are using are from the axis along which black body radiators emit (the color temperature axis), the more likely you'll need very fine and customized color corrections. In camera adjustments are fairly coarse compared to what can be done with a good raw conversion application. For instance, in camera WB correction with Canon cameras is limited to integer values (i.e. 1, 2, 3, etc.). In Canon's Digital Photo Professional 4 the gradations are in tenths (i.e. 1.0, 1.1, 1.2, 1.3, etc.). Physical filters are even more limited in terms of the steps between conventional choices.



            Beyond doing color correction in two dimensions instead of just one, there's also the issue that many artificial light sources don't emit the full spectrum of visible light.



            Most natural light sources do. The sun may be centered on about 5500 K, but there is a little bit of the entire visible spectrum in sunlight. That's generally because the black body radiator is not the exact same temperature over the entire surface that is emitting light. It's also because the Earth's atmosphere absorbs some of the energy radiated by our sun, and lets what we call visible light pass more easily. (Of course the reason we call it "visible light" is because we have evolved to be visually sensitive to the wavelengths of electromagnetic radiation that the atmosphere we evolved in allows to pass most easily!)



            With artificial light sources that do not give a broad spectrum of light, there are certain colors we can't reproduce. This is because there is no light the proper wavelength(s) to reflect off our subject for that color. Custom White Balances come in very handy for such lighting. In such cases, we might also have to use an HSL (Hue-Saturation-Luminance) tool in post processing to remove a color cast.




            What should I use as a rule to get it right?




            Use calibrated test targets, either of various shades of gray or a full color calibration test chart. You can set in-camera "Custom White Balance" with a gray card that will usually get pretty close. The more exotic color test cards require using software installed on your computer to set a color profile to correct for the colors of the test card.



            Ultimately, with limited spectrum light sources, you may need to add light of your own to fill the gaps.



            For further reading:



            How to cancel purple stage lighting on subjects?
            Relationship between tint-temp and magenta-green-blue-amber white balance corrections?
            How do I get good colors when taking pictures in the city at night?
            How to get the most out of low-level monochromatic light?
            How does the colour of ambient lighting affect colour rendition?



            RAW files store 3 colors per pixel, or only one?
            What *exactly* is white balance?







            share|improve this answer














            share|improve this answer



            share|improve this answer








            edited 9 hours ago









            Loong

            34739




            34739










            answered 17 hours ago









            Michael CMichael C

            129k7144364




            129k7144364

























                2














                Well first of all if you shoot in RAW then you can tweak this process in postprocess, but I believe you're already know that.



                A White Balance is a way of saying what is a dominant light colour in the scene. This has nothing to do with "look right" or "correct". It says exactly what I stated. When you shoot outside then dominant light is sun that has it's own characteristic base on time of a day and clouds setup. Yet in the scene there might be more light sources with different colour that affects only parts of the object you try to photography which leads to colour casts. Keep in mind that if you light a person standing on grass around green trees, apart from a sunlight you will also have a green reflected light bounced from many sources.



                If you want to help you DSLR you can simply have a greycard shoot and set WB for that specific WB, but this will not solve problem I mention before - this will only affect WB for a whole scene.



                Last thing - many photographer chasing correct WB as a way to go, to learn that in fact they don't want have correct WB, just pleasing colours. That's a bigger topic and usually involves lot of changes into the colours itself.






                share|improve this answer








                New contributor




                Paweł Witkowski Photography is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                Check out our Code of Conduct.

























                  2














                  Well first of all if you shoot in RAW then you can tweak this process in postprocess, but I believe you're already know that.



                  A White Balance is a way of saying what is a dominant light colour in the scene. This has nothing to do with "look right" or "correct". It says exactly what I stated. When you shoot outside then dominant light is sun that has it's own characteristic base on time of a day and clouds setup. Yet in the scene there might be more light sources with different colour that affects only parts of the object you try to photography which leads to colour casts. Keep in mind that if you light a person standing on grass around green trees, apart from a sunlight you will also have a green reflected light bounced from many sources.



                  If you want to help you DSLR you can simply have a greycard shoot and set WB for that specific WB, but this will not solve problem I mention before - this will only affect WB for a whole scene.



                  Last thing - many photographer chasing correct WB as a way to go, to learn that in fact they don't want have correct WB, just pleasing colours. That's a bigger topic and usually involves lot of changes into the colours itself.






                  share|improve this answer








                  New contributor




                  Paweł Witkowski Photography is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                  Check out our Code of Conduct.























                    2












                    2








                    2







                    Well first of all if you shoot in RAW then you can tweak this process in postprocess, but I believe you're already know that.



                    A White Balance is a way of saying what is a dominant light colour in the scene. This has nothing to do with "look right" or "correct". It says exactly what I stated. When you shoot outside then dominant light is sun that has it's own characteristic base on time of a day and clouds setup. Yet in the scene there might be more light sources with different colour that affects only parts of the object you try to photography which leads to colour casts. Keep in mind that if you light a person standing on grass around green trees, apart from a sunlight you will also have a green reflected light bounced from many sources.



                    If you want to help you DSLR you can simply have a greycard shoot and set WB for that specific WB, but this will not solve problem I mention before - this will only affect WB for a whole scene.



                    Last thing - many photographer chasing correct WB as a way to go, to learn that in fact they don't want have correct WB, just pleasing colours. That's a bigger topic and usually involves lot of changes into the colours itself.






                    share|improve this answer








                    New contributor




                    Paweł Witkowski Photography is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                    Check out our Code of Conduct.










                    Well first of all if you shoot in RAW then you can tweak this process in postprocess, but I believe you're already know that.



                    A White Balance is a way of saying what is a dominant light colour in the scene. This has nothing to do with "look right" or "correct". It says exactly what I stated. When you shoot outside then dominant light is sun that has it's own characteristic base on time of a day and clouds setup. Yet in the scene there might be more light sources with different colour that affects only parts of the object you try to photography which leads to colour casts. Keep in mind that if you light a person standing on grass around green trees, apart from a sunlight you will also have a green reflected light bounced from many sources.



                    If you want to help you DSLR you can simply have a greycard shoot and set WB for that specific WB, but this will not solve problem I mention before - this will only affect WB for a whole scene.



                    Last thing - many photographer chasing correct WB as a way to go, to learn that in fact they don't want have correct WB, just pleasing colours. That's a bigger topic and usually involves lot of changes into the colours itself.







                    share|improve this answer








                    New contributor




                    Paweł Witkowski Photography is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                    Check out our Code of Conduct.









                    share|improve this answer



                    share|improve this answer






                    New contributor




                    Paweł Witkowski Photography is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                    Check out our Code of Conduct.









                    answered 18 hours ago









                    Paweł Witkowski PhotographyPaweł Witkowski Photography

                    1212




                    1212




                    New contributor




                    Paweł Witkowski Photography is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                    Check out our Code of Conduct.





                    New contributor





                    Paweł Witkowski Photography is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                    Check out our Code of Conduct.






                    Paweł Witkowski Photography is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                    Check out our Code of Conduct.























                        0














                        White Balance – Its purpose is neutralizing a color cast prompted by off-color illumination. In other words, if the source does not output truly white light, likely the recorded image will be off as to tint. The auto white balance logic evaluates the overall scene and attempts to neutralize off-tints. This works most of the time but sometimes the results are not that desirable.



                        Let me add that the color balance of the final image, as viewed, can be biased by the output of the viewing media. As an example, the computer monitor might add a bias and paper prints of this image might be biased because the printing system is not optimized. You should consider using your image editing software to make the final tweak.



                        That being said, you can switch to a manual white balance as this setting, used properly can achieve a better outcome. You can pre-set the white balance based on your observation, i.e. the vista is lit by tungsten or florescent lamps or the principle subject is in deep shade. In other words, your camera’s white balance has several pre-set illumination conditions.



                        One peculiarity of white balance is the Kelvin scale of temperature/color. Science has discovered that the color of illuminates can associated with and classified by the temperature heated and thus glowing articles. We can heat a metal poker till it glows faint red. Elevate the temperature and the glowing color shifts dark-red, cherry-red, orange, yellow, yellow-white, white, blue-white. The photo industry correlates the color of the illuminate in use to the temperature of a glowing standard body.



                        Lit match = 1700K – Candle = 1850K – Standard 60W tungsten bulb = 2400K – Studio Tungsten bulb = 3200K – Daylight = 5500K – Daylight overcast = 6500K.



                        Note the temperate scale use is the Kalvin Scale. This is the common Celsius Scale + 273. Seems an odd scale but many scientist prefer because this scale avoids the use of negative temperatures that no confusion -10C with +10C – and there are more reasons why Kalvin not Celsius or Fahrenheit.






                        share|improve this answer




























                          0














                          White Balance – Its purpose is neutralizing a color cast prompted by off-color illumination. In other words, if the source does not output truly white light, likely the recorded image will be off as to tint. The auto white balance logic evaluates the overall scene and attempts to neutralize off-tints. This works most of the time but sometimes the results are not that desirable.



                          Let me add that the color balance of the final image, as viewed, can be biased by the output of the viewing media. As an example, the computer monitor might add a bias and paper prints of this image might be biased because the printing system is not optimized. You should consider using your image editing software to make the final tweak.



                          That being said, you can switch to a manual white balance as this setting, used properly can achieve a better outcome. You can pre-set the white balance based on your observation, i.e. the vista is lit by tungsten or florescent lamps or the principle subject is in deep shade. In other words, your camera’s white balance has several pre-set illumination conditions.



                          One peculiarity of white balance is the Kelvin scale of temperature/color. Science has discovered that the color of illuminates can associated with and classified by the temperature heated and thus glowing articles. We can heat a metal poker till it glows faint red. Elevate the temperature and the glowing color shifts dark-red, cherry-red, orange, yellow, yellow-white, white, blue-white. The photo industry correlates the color of the illuminate in use to the temperature of a glowing standard body.



                          Lit match = 1700K – Candle = 1850K – Standard 60W tungsten bulb = 2400K – Studio Tungsten bulb = 3200K – Daylight = 5500K – Daylight overcast = 6500K.



                          Note the temperate scale use is the Kalvin Scale. This is the common Celsius Scale + 273. Seems an odd scale but many scientist prefer because this scale avoids the use of negative temperatures that no confusion -10C with +10C – and there are more reasons why Kalvin not Celsius or Fahrenheit.






                          share|improve this answer


























                            0












                            0








                            0







                            White Balance – Its purpose is neutralizing a color cast prompted by off-color illumination. In other words, if the source does not output truly white light, likely the recorded image will be off as to tint. The auto white balance logic evaluates the overall scene and attempts to neutralize off-tints. This works most of the time but sometimes the results are not that desirable.



                            Let me add that the color balance of the final image, as viewed, can be biased by the output of the viewing media. As an example, the computer monitor might add a bias and paper prints of this image might be biased because the printing system is not optimized. You should consider using your image editing software to make the final tweak.



                            That being said, you can switch to a manual white balance as this setting, used properly can achieve a better outcome. You can pre-set the white balance based on your observation, i.e. the vista is lit by tungsten or florescent lamps or the principle subject is in deep shade. In other words, your camera’s white balance has several pre-set illumination conditions.



                            One peculiarity of white balance is the Kelvin scale of temperature/color. Science has discovered that the color of illuminates can associated with and classified by the temperature heated and thus glowing articles. We can heat a metal poker till it glows faint red. Elevate the temperature and the glowing color shifts dark-red, cherry-red, orange, yellow, yellow-white, white, blue-white. The photo industry correlates the color of the illuminate in use to the temperature of a glowing standard body.



                            Lit match = 1700K – Candle = 1850K – Standard 60W tungsten bulb = 2400K – Studio Tungsten bulb = 3200K – Daylight = 5500K – Daylight overcast = 6500K.



                            Note the temperate scale use is the Kalvin Scale. This is the common Celsius Scale + 273. Seems an odd scale but many scientist prefer because this scale avoids the use of negative temperatures that no confusion -10C with +10C – and there are more reasons why Kalvin not Celsius or Fahrenheit.






                            share|improve this answer













                            White Balance – Its purpose is neutralizing a color cast prompted by off-color illumination. In other words, if the source does not output truly white light, likely the recorded image will be off as to tint. The auto white balance logic evaluates the overall scene and attempts to neutralize off-tints. This works most of the time but sometimes the results are not that desirable.



                            Let me add that the color balance of the final image, as viewed, can be biased by the output of the viewing media. As an example, the computer monitor might add a bias and paper prints of this image might be biased because the printing system is not optimized. You should consider using your image editing software to make the final tweak.



                            That being said, you can switch to a manual white balance as this setting, used properly can achieve a better outcome. You can pre-set the white balance based on your observation, i.e. the vista is lit by tungsten or florescent lamps or the principle subject is in deep shade. In other words, your camera’s white balance has several pre-set illumination conditions.



                            One peculiarity of white balance is the Kelvin scale of temperature/color. Science has discovered that the color of illuminates can associated with and classified by the temperature heated and thus glowing articles. We can heat a metal poker till it glows faint red. Elevate the temperature and the glowing color shifts dark-red, cherry-red, orange, yellow, yellow-white, white, blue-white. The photo industry correlates the color of the illuminate in use to the temperature of a glowing standard body.



                            Lit match = 1700K – Candle = 1850K – Standard 60W tungsten bulb = 2400K – Studio Tungsten bulb = 3200K – Daylight = 5500K – Daylight overcast = 6500K.



                            Note the temperate scale use is the Kalvin Scale. This is the common Celsius Scale + 273. Seems an odd scale but many scientist prefer because this scale avoids the use of negative temperatures that no confusion -10C with +10C – and there are more reasons why Kalvin not Celsius or Fahrenheit.







                            share|improve this answer












                            share|improve this answer



                            share|improve this answer










                            answered 12 hours ago









                            Alan MarcusAlan Marcus

                            25.1k23059




                            25.1k23059






















                                Housefly is a new contributor. Be nice, and check out our Code of Conduct.










                                draft saved

                                draft discarded


















                                Housefly is a new contributor. Be nice, and check out our Code of Conduct.













                                Housefly is a new contributor. Be nice, and check out our Code of Conduct.












                                Housefly is a new contributor. Be nice, and check out our Code of Conduct.
















                                Thanks for contributing an answer to Photography Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphoto.stackexchange.com%2fquestions%2f104333%2fsetting-the-right-white-balance-value%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Сан-Квентин

                                8-я гвардейская общевойсковая армия

                                Алькесар