Proving that the arithmetic and geometric means of a collection of non-negative numbers lies between their...
$begingroup$
Consider non-negative real numbers $a_1, a_2, a_3, ... , a_n$. How can I prove that both the arithmetic mean (AM) and the geometric mean (GM) of $a_1, a_2, a_3, ... , a_n$ are contained in the interval $[x, y]$, where $x = text{minimum of} (a_1, a_2, a_3, ... , a_n)$ and $y = text{maximum of} (a_1, a_2, a_3, ... , a_n)$?
I know that the GM AM inequality states that GM $leq$ AM, so it would suffice to prove GM $geq$ x and AM $leq$ y. Am I correct so far, and if so, how should I proceed with the proof? Any hints or help in this direction would be greatly appreciated.
Thank you!
real-analysis proof-writing a.m.-g.m.-inequality
$endgroup$
add a comment |
$begingroup$
Consider non-negative real numbers $a_1, a_2, a_3, ... , a_n$. How can I prove that both the arithmetic mean (AM) and the geometric mean (GM) of $a_1, a_2, a_3, ... , a_n$ are contained in the interval $[x, y]$, where $x = text{minimum of} (a_1, a_2, a_3, ... , a_n)$ and $y = text{maximum of} (a_1, a_2, a_3, ... , a_n)$?
I know that the GM AM inequality states that GM $leq$ AM, so it would suffice to prove GM $geq$ x and AM $leq$ y. Am I correct so far, and if so, how should I proceed with the proof? Any hints or help in this direction would be greatly appreciated.
Thank you!
real-analysis proof-writing a.m.-g.m.-inequality
$endgroup$
$begingroup$
$a_1le y$, $a_2le y,ldots$ so $a_1a_2cdots a_nle y^n$. Does that help you show that the GM is $le y$?
$endgroup$
– Lord Shark the Unknown
2 days ago
add a comment |
$begingroup$
Consider non-negative real numbers $a_1, a_2, a_3, ... , a_n$. How can I prove that both the arithmetic mean (AM) and the geometric mean (GM) of $a_1, a_2, a_3, ... , a_n$ are contained in the interval $[x, y]$, where $x = text{minimum of} (a_1, a_2, a_3, ... , a_n)$ and $y = text{maximum of} (a_1, a_2, a_3, ... , a_n)$?
I know that the GM AM inequality states that GM $leq$ AM, so it would suffice to prove GM $geq$ x and AM $leq$ y. Am I correct so far, and if so, how should I proceed with the proof? Any hints or help in this direction would be greatly appreciated.
Thank you!
real-analysis proof-writing a.m.-g.m.-inequality
$endgroup$
Consider non-negative real numbers $a_1, a_2, a_3, ... , a_n$. How can I prove that both the arithmetic mean (AM) and the geometric mean (GM) of $a_1, a_2, a_3, ... , a_n$ are contained in the interval $[x, y]$, where $x = text{minimum of} (a_1, a_2, a_3, ... , a_n)$ and $y = text{maximum of} (a_1, a_2, a_3, ... , a_n)$?
I know that the GM AM inequality states that GM $leq$ AM, so it would suffice to prove GM $geq$ x and AM $leq$ y. Am I correct so far, and if so, how should I proceed with the proof? Any hints or help in this direction would be greatly appreciated.
Thank you!
real-analysis proof-writing a.m.-g.m.-inequality
real-analysis proof-writing a.m.-g.m.-inequality
edited 2 days ago
Blue
47.7k870151
47.7k870151
asked 2 days ago
Zen'zZen'z
183
183
$begingroup$
$a_1le y$, $a_2le y,ldots$ so $a_1a_2cdots a_nle y^n$. Does that help you show that the GM is $le y$?
$endgroup$
– Lord Shark the Unknown
2 days ago
add a comment |
$begingroup$
$a_1le y$, $a_2le y,ldots$ so $a_1a_2cdots a_nle y^n$. Does that help you show that the GM is $le y$?
$endgroup$
– Lord Shark the Unknown
2 days ago
$begingroup$
$a_1le y$, $a_2le y,ldots$ so $a_1a_2cdots a_nle y^n$. Does that help you show that the GM is $le y$?
$endgroup$
– Lord Shark the Unknown
2 days ago
$begingroup$
$a_1le y$, $a_2le y,ldots$ so $a_1a_2cdots a_nle y^n$. Does that help you show that the GM is $le y$?
$endgroup$
– Lord Shark the Unknown
2 days ago
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Yes, you are correct, it suffices to show that
i) $GMgeq x$, that is
$$a_1 a_2 a_3 cdots a_ngeq xcdot xcdot xcdots x= x^n$$
which holds because $a_kgeq x=min(a_1,a_2,a_3,dots,a_n)geq 0$ for $k=1,2,3,dots,n$.
ii) $AMleq y$, that is
$$a_1+a_2+a_3 +dots +a_nleq y+ y+ y+dots+ y=ny$$
which holds because $a_kleq y=max(a_1,a_2,a_3,dots,a_n)$ for $k=1,2,3,dots,n$.
$endgroup$
add a comment |
$begingroup$
Just note that
- $0leq x leq a_i Rightarrow sqrt[n]{x^n}leq sqrt[n]{a_1 cdot ldots cdot a_n}$
- $a_i leq y Rightarrow frac{a_1 + cdots + a_n}{n}leq frac{y + cdots + y}{n} = y$
$endgroup$
add a comment |
$begingroup$
GM: $sqrt[n]{a_1a_2cdots a_n}geqsqrt[n]{x^n}= x$
AM: $frac{a_1+a_2+cdots+ a_n}{n}leq frac{ny}{n}=y$
$ygeq(AM,GM)geq x$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069493%2fproving-that-the-arithmetic-and-geometric-means-of-a-collection-of-non-negative%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Yes, you are correct, it suffices to show that
i) $GMgeq x$, that is
$$a_1 a_2 a_3 cdots a_ngeq xcdot xcdot xcdots x= x^n$$
which holds because $a_kgeq x=min(a_1,a_2,a_3,dots,a_n)geq 0$ for $k=1,2,3,dots,n$.
ii) $AMleq y$, that is
$$a_1+a_2+a_3 +dots +a_nleq y+ y+ y+dots+ y=ny$$
which holds because $a_kleq y=max(a_1,a_2,a_3,dots,a_n)$ for $k=1,2,3,dots,n$.
$endgroup$
add a comment |
$begingroup$
Yes, you are correct, it suffices to show that
i) $GMgeq x$, that is
$$a_1 a_2 a_3 cdots a_ngeq xcdot xcdot xcdots x= x^n$$
which holds because $a_kgeq x=min(a_1,a_2,a_3,dots,a_n)geq 0$ for $k=1,2,3,dots,n$.
ii) $AMleq y$, that is
$$a_1+a_2+a_3 +dots +a_nleq y+ y+ y+dots+ y=ny$$
which holds because $a_kleq y=max(a_1,a_2,a_3,dots,a_n)$ for $k=1,2,3,dots,n$.
$endgroup$
add a comment |
$begingroup$
Yes, you are correct, it suffices to show that
i) $GMgeq x$, that is
$$a_1 a_2 a_3 cdots a_ngeq xcdot xcdot xcdots x= x^n$$
which holds because $a_kgeq x=min(a_1,a_2,a_3,dots,a_n)geq 0$ for $k=1,2,3,dots,n$.
ii) $AMleq y$, that is
$$a_1+a_2+a_3 +dots +a_nleq y+ y+ y+dots+ y=ny$$
which holds because $a_kleq y=max(a_1,a_2,a_3,dots,a_n)$ for $k=1,2,3,dots,n$.
$endgroup$
Yes, you are correct, it suffices to show that
i) $GMgeq x$, that is
$$a_1 a_2 a_3 cdots a_ngeq xcdot xcdot xcdots x= x^n$$
which holds because $a_kgeq x=min(a_1,a_2,a_3,dots,a_n)geq 0$ for $k=1,2,3,dots,n$.
ii) $AMleq y$, that is
$$a_1+a_2+a_3 +dots +a_nleq y+ y+ y+dots+ y=ny$$
which holds because $a_kleq y=max(a_1,a_2,a_3,dots,a_n)$ for $k=1,2,3,dots,n$.
edited 2 days ago
answered 2 days ago
Robert ZRobert Z
94.5k1062133
94.5k1062133
add a comment |
add a comment |
$begingroup$
Just note that
- $0leq x leq a_i Rightarrow sqrt[n]{x^n}leq sqrt[n]{a_1 cdot ldots cdot a_n}$
- $a_i leq y Rightarrow frac{a_1 + cdots + a_n}{n}leq frac{y + cdots + y}{n} = y$
$endgroup$
add a comment |
$begingroup$
Just note that
- $0leq x leq a_i Rightarrow sqrt[n]{x^n}leq sqrt[n]{a_1 cdot ldots cdot a_n}$
- $a_i leq y Rightarrow frac{a_1 + cdots + a_n}{n}leq frac{y + cdots + y}{n} = y$
$endgroup$
add a comment |
$begingroup$
Just note that
- $0leq x leq a_i Rightarrow sqrt[n]{x^n}leq sqrt[n]{a_1 cdot ldots cdot a_n}$
- $a_i leq y Rightarrow frac{a_1 + cdots + a_n}{n}leq frac{y + cdots + y}{n} = y$
$endgroup$
Just note that
- $0leq x leq a_i Rightarrow sqrt[n]{x^n}leq sqrt[n]{a_1 cdot ldots cdot a_n}$
- $a_i leq y Rightarrow frac{a_1 + cdots + a_n}{n}leq frac{y + cdots + y}{n} = y$
answered 2 days ago
trancelocationtrancelocation
9,6801722
9,6801722
add a comment |
add a comment |
$begingroup$
GM: $sqrt[n]{a_1a_2cdots a_n}geqsqrt[n]{x^n}= x$
AM: $frac{a_1+a_2+cdots+ a_n}{n}leq frac{ny}{n}=y$
$ygeq(AM,GM)geq x$
$endgroup$
add a comment |
$begingroup$
GM: $sqrt[n]{a_1a_2cdots a_n}geqsqrt[n]{x^n}= x$
AM: $frac{a_1+a_2+cdots+ a_n}{n}leq frac{ny}{n}=y$
$ygeq(AM,GM)geq x$
$endgroup$
add a comment |
$begingroup$
GM: $sqrt[n]{a_1a_2cdots a_n}geqsqrt[n]{x^n}= x$
AM: $frac{a_1+a_2+cdots+ a_n}{n}leq frac{ny}{n}=y$
$ygeq(AM,GM)geq x$
$endgroup$
GM: $sqrt[n]{a_1a_2cdots a_n}geqsqrt[n]{x^n}= x$
AM: $frac{a_1+a_2+cdots+ a_n}{n}leq frac{ny}{n}=y$
$ygeq(AM,GM)geq x$
answered 2 days ago
LeeLee
234111
234111
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069493%2fproving-that-the-arithmetic-and-geometric-means-of-a-collection-of-non-negative%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
$a_1le y$, $a_2le y,ldots$ so $a_1a_2cdots a_nle y^n$. Does that help you show that the GM is $le y$?
$endgroup$
– Lord Shark the Unknown
2 days ago