Proving that the arithmetic and geometric means of a collection of non-negative numbers lies between their...












2












$begingroup$



Consider non-negative real numbers $a_1, a_2, a_3, ... , a_n$. How can I prove that both the arithmetic mean (AM) and the geometric mean (GM) of $a_1, a_2, a_3, ... , a_n$ are contained in the interval $[x, y]$, where $x = text{minimum of} (a_1, a_2, a_3, ... , a_n)$ and $y = text{maximum of} (a_1, a_2, a_3, ... , a_n)$?




I know that the GM AM inequality states that GM $leq$ AM, so it would suffice to prove GM $geq$ x and AM $leq$ y. Am I correct so far, and if so, how should I proceed with the proof? Any hints or help in this direction would be greatly appreciated.



Thank you!










share|cite|improve this question











$endgroup$












  • $begingroup$
    $a_1le y$, $a_2le y,ldots$ so $a_1a_2cdots a_nle y^n$. Does that help you show that the GM is $le y$?
    $endgroup$
    – Lord Shark the Unknown
    2 days ago
















2












$begingroup$



Consider non-negative real numbers $a_1, a_2, a_3, ... , a_n$. How can I prove that both the arithmetic mean (AM) and the geometric mean (GM) of $a_1, a_2, a_3, ... , a_n$ are contained in the interval $[x, y]$, where $x = text{minimum of} (a_1, a_2, a_3, ... , a_n)$ and $y = text{maximum of} (a_1, a_2, a_3, ... , a_n)$?




I know that the GM AM inequality states that GM $leq$ AM, so it would suffice to prove GM $geq$ x and AM $leq$ y. Am I correct so far, and if so, how should I proceed with the proof? Any hints or help in this direction would be greatly appreciated.



Thank you!










share|cite|improve this question











$endgroup$












  • $begingroup$
    $a_1le y$, $a_2le y,ldots$ so $a_1a_2cdots a_nle y^n$. Does that help you show that the GM is $le y$?
    $endgroup$
    – Lord Shark the Unknown
    2 days ago














2












2








2





$begingroup$



Consider non-negative real numbers $a_1, a_2, a_3, ... , a_n$. How can I prove that both the arithmetic mean (AM) and the geometric mean (GM) of $a_1, a_2, a_3, ... , a_n$ are contained in the interval $[x, y]$, where $x = text{minimum of} (a_1, a_2, a_3, ... , a_n)$ and $y = text{maximum of} (a_1, a_2, a_3, ... , a_n)$?




I know that the GM AM inequality states that GM $leq$ AM, so it would suffice to prove GM $geq$ x and AM $leq$ y. Am I correct so far, and if so, how should I proceed with the proof? Any hints or help in this direction would be greatly appreciated.



Thank you!










share|cite|improve this question











$endgroup$





Consider non-negative real numbers $a_1, a_2, a_3, ... , a_n$. How can I prove that both the arithmetic mean (AM) and the geometric mean (GM) of $a_1, a_2, a_3, ... , a_n$ are contained in the interval $[x, y]$, where $x = text{minimum of} (a_1, a_2, a_3, ... , a_n)$ and $y = text{maximum of} (a_1, a_2, a_3, ... , a_n)$?




I know that the GM AM inequality states that GM $leq$ AM, so it would suffice to prove GM $geq$ x and AM $leq$ y. Am I correct so far, and if so, how should I proceed with the proof? Any hints or help in this direction would be greatly appreciated.



Thank you!







real-analysis proof-writing a.m.-g.m.-inequality






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 2 days ago









Blue

47.7k870151




47.7k870151










asked 2 days ago









Zen'zZen'z

183




183












  • $begingroup$
    $a_1le y$, $a_2le y,ldots$ so $a_1a_2cdots a_nle y^n$. Does that help you show that the GM is $le y$?
    $endgroup$
    – Lord Shark the Unknown
    2 days ago


















  • $begingroup$
    $a_1le y$, $a_2le y,ldots$ so $a_1a_2cdots a_nle y^n$. Does that help you show that the GM is $le y$?
    $endgroup$
    – Lord Shark the Unknown
    2 days ago
















$begingroup$
$a_1le y$, $a_2le y,ldots$ so $a_1a_2cdots a_nle y^n$. Does that help you show that the GM is $le y$?
$endgroup$
– Lord Shark the Unknown
2 days ago




$begingroup$
$a_1le y$, $a_2le y,ldots$ so $a_1a_2cdots a_nle y^n$. Does that help you show that the GM is $le y$?
$endgroup$
– Lord Shark the Unknown
2 days ago










3 Answers
3






active

oldest

votes


















4












$begingroup$

Yes, you are correct, it suffices to show that



i) $GMgeq x$, that is
$$a_1 a_2 a_3 cdots a_ngeq xcdot xcdot xcdots x= x^n$$
which holds because $a_kgeq x=min(a_1,a_2,a_3,dots,a_n)geq 0$ for $k=1,2,3,dots,n$.



ii) $AMleq y$, that is
$$a_1+a_2+a_3 +dots +a_nleq y+ y+ y+dots+ y=ny$$
which holds because $a_kleq y=max(a_1,a_2,a_3,dots,a_n)$ for $k=1,2,3,dots,n$.






share|cite|improve this answer











$endgroup$





















    4












    $begingroup$

    Just note that




    • $0leq x leq a_i Rightarrow sqrt[n]{x^n}leq sqrt[n]{a_1 cdot ldots cdot a_n}$

    • $a_i leq y Rightarrow frac{a_1 + cdots + a_n}{n}leq frac{y + cdots + y}{n} = y$






    share|cite|improve this answer









    $endgroup$





















      2












      $begingroup$

      GM: $sqrt[n]{a_1a_2cdots a_n}geqsqrt[n]{x^n}= x$



      AM: $frac{a_1+a_2+cdots+ a_n}{n}leq frac{ny}{n}=y$



      $ygeq(AM,GM)geq x$






      share|cite|improve this answer









      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069493%2fproving-that-the-arithmetic-and-geometric-means-of-a-collection-of-non-negative%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        4












        $begingroup$

        Yes, you are correct, it suffices to show that



        i) $GMgeq x$, that is
        $$a_1 a_2 a_3 cdots a_ngeq xcdot xcdot xcdots x= x^n$$
        which holds because $a_kgeq x=min(a_1,a_2,a_3,dots,a_n)geq 0$ for $k=1,2,3,dots,n$.



        ii) $AMleq y$, that is
        $$a_1+a_2+a_3 +dots +a_nleq y+ y+ y+dots+ y=ny$$
        which holds because $a_kleq y=max(a_1,a_2,a_3,dots,a_n)$ for $k=1,2,3,dots,n$.






        share|cite|improve this answer











        $endgroup$


















          4












          $begingroup$

          Yes, you are correct, it suffices to show that



          i) $GMgeq x$, that is
          $$a_1 a_2 a_3 cdots a_ngeq xcdot xcdot xcdots x= x^n$$
          which holds because $a_kgeq x=min(a_1,a_2,a_3,dots,a_n)geq 0$ for $k=1,2,3,dots,n$.



          ii) $AMleq y$, that is
          $$a_1+a_2+a_3 +dots +a_nleq y+ y+ y+dots+ y=ny$$
          which holds because $a_kleq y=max(a_1,a_2,a_3,dots,a_n)$ for $k=1,2,3,dots,n$.






          share|cite|improve this answer











          $endgroup$
















            4












            4








            4





            $begingroup$

            Yes, you are correct, it suffices to show that



            i) $GMgeq x$, that is
            $$a_1 a_2 a_3 cdots a_ngeq xcdot xcdot xcdots x= x^n$$
            which holds because $a_kgeq x=min(a_1,a_2,a_3,dots,a_n)geq 0$ for $k=1,2,3,dots,n$.



            ii) $AMleq y$, that is
            $$a_1+a_2+a_3 +dots +a_nleq y+ y+ y+dots+ y=ny$$
            which holds because $a_kleq y=max(a_1,a_2,a_3,dots,a_n)$ for $k=1,2,3,dots,n$.






            share|cite|improve this answer











            $endgroup$



            Yes, you are correct, it suffices to show that



            i) $GMgeq x$, that is
            $$a_1 a_2 a_3 cdots a_ngeq xcdot xcdot xcdots x= x^n$$
            which holds because $a_kgeq x=min(a_1,a_2,a_3,dots,a_n)geq 0$ for $k=1,2,3,dots,n$.



            ii) $AMleq y$, that is
            $$a_1+a_2+a_3 +dots +a_nleq y+ y+ y+dots+ y=ny$$
            which holds because $a_kleq y=max(a_1,a_2,a_3,dots,a_n)$ for $k=1,2,3,dots,n$.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited 2 days ago

























            answered 2 days ago









            Robert ZRobert Z

            94.5k1062133




            94.5k1062133























                4












                $begingroup$

                Just note that




                • $0leq x leq a_i Rightarrow sqrt[n]{x^n}leq sqrt[n]{a_1 cdot ldots cdot a_n}$

                • $a_i leq y Rightarrow frac{a_1 + cdots + a_n}{n}leq frac{y + cdots + y}{n} = y$






                share|cite|improve this answer









                $endgroup$


















                  4












                  $begingroup$

                  Just note that




                  • $0leq x leq a_i Rightarrow sqrt[n]{x^n}leq sqrt[n]{a_1 cdot ldots cdot a_n}$

                  • $a_i leq y Rightarrow frac{a_1 + cdots + a_n}{n}leq frac{y + cdots + y}{n} = y$






                  share|cite|improve this answer









                  $endgroup$
















                    4












                    4








                    4





                    $begingroup$

                    Just note that




                    • $0leq x leq a_i Rightarrow sqrt[n]{x^n}leq sqrt[n]{a_1 cdot ldots cdot a_n}$

                    • $a_i leq y Rightarrow frac{a_1 + cdots + a_n}{n}leq frac{y + cdots + y}{n} = y$






                    share|cite|improve this answer









                    $endgroup$



                    Just note that




                    • $0leq x leq a_i Rightarrow sqrt[n]{x^n}leq sqrt[n]{a_1 cdot ldots cdot a_n}$

                    • $a_i leq y Rightarrow frac{a_1 + cdots + a_n}{n}leq frac{y + cdots + y}{n} = y$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered 2 days ago









                    trancelocationtrancelocation

                    9,6801722




                    9,6801722























                        2












                        $begingroup$

                        GM: $sqrt[n]{a_1a_2cdots a_n}geqsqrt[n]{x^n}= x$



                        AM: $frac{a_1+a_2+cdots+ a_n}{n}leq frac{ny}{n}=y$



                        $ygeq(AM,GM)geq x$






                        share|cite|improve this answer









                        $endgroup$


















                          2












                          $begingroup$

                          GM: $sqrt[n]{a_1a_2cdots a_n}geqsqrt[n]{x^n}= x$



                          AM: $frac{a_1+a_2+cdots+ a_n}{n}leq frac{ny}{n}=y$



                          $ygeq(AM,GM)geq x$






                          share|cite|improve this answer









                          $endgroup$
















                            2












                            2








                            2





                            $begingroup$

                            GM: $sqrt[n]{a_1a_2cdots a_n}geqsqrt[n]{x^n}= x$



                            AM: $frac{a_1+a_2+cdots+ a_n}{n}leq frac{ny}{n}=y$



                            $ygeq(AM,GM)geq x$






                            share|cite|improve this answer









                            $endgroup$



                            GM: $sqrt[n]{a_1a_2cdots a_n}geqsqrt[n]{x^n}= x$



                            AM: $frac{a_1+a_2+cdots+ a_n}{n}leq frac{ny}{n}=y$



                            $ygeq(AM,GM)geq x$







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered 2 days ago









                            LeeLee

                            234111




                            234111






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069493%2fproving-that-the-arithmetic-and-geometric-means-of-a-collection-of-non-negative%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Сан-Квентин

                                Алькесар

                                Josef Freinademetz