Implementing Cyrus Beck algorithm for convex polygons
up vote
2
down vote
favorite
I have found the coordinates of the centroid for finding the direction of the normal vectors of the edges of the convex polygons. This method seems to work in the cases I tested. Is this fool proof ? Are there any better alternatives ?
CyrusBeck.cpp
#include<iostream>
#include<cmath>
#include"graphics.hpp"
#define P pair<double, double>
vector<P> V, N;
P C;
double dot(P A, P B){
return (A.first*B.first + A.second*B.second);
}
P operator - (const P &A, const P &B){
return make_pair(A.first-B.first, A.second-B.second);
}
P operator + (const P &A, const P &B){
return make_pair(A.first+B.first, A.second+B.second);
}
P operator * (const P &A, const double t){
return make_pair(t*A.first, t*A.second);
}
void computeNormal(int n = V.size()){
double m;
P prev = V[0];
double x=-1, y;
for(int i=1; i<n; ++i){
m = -(V[i].first-prev.first)/(V[i].second-prev.second);
P d = V[i]-prev;
int lr=1, tb=1;
if(V[i-1].first>C.first)
lr = -1;
if(V[i-1].second>C.second)
tb=-1;
N[i-1].first = lr*abs(cos(atan(m)));
N[i-1].second = tb*abs(sin(atan(m)));
prev = V[i];
}
m = -(V[0].first-prev.first)/(V[0].second-prev.second);
int lr=1, tb=1;
if(V[n-1].first>C.first)
lr = -1;
if(V[n-1].second>C.second)
tb=-1;
N[n-1].first = lr*abs(cos(atan(m)));
N[n-1].second = tb*abs(sin(atan(m)));
}
int check(P A, P B, int n){
P p = B - V[0];
double d1 = dot(p, N[0]);
P q = A - V[0];
double d2 = dot(q, N[0]);
if(d1<0&&d2<0)
return 0;
if(d1>=0&&d2>=0)
return 1;
return -1;
}
void Clip(P A, P B, double &tE, double &tL, int n = V.size()){
tE = 0; tL = 1;
for(int i=0; i<n; ++i){
double d = dot((B-A), N[i]);
if(d==0)
continue;
double t = dot((A-V[i]), N[i])/dot((A-B), N[i]);
if(d>0&&t>tE)
tE = t;
else if(d<0&&t<tL)
tL = t;
}
}
void display(){
cout<<"Enter the number of verticesn";
int n; cin>>n;
V.resize(n);
N.resize(n);
cout<<"Enter the coordinates of the vertices in ordern";
for(int i=0; i<n; ++i){
cin>>V[i].first>>V[i].second;
C = C + V[i];
}
C.first/=n; C.second/=n;
drawPolygon(V, n, white);
glutSwapBuffers();
cout<<"Enter the co-ordinates of the line(4)n";
P A, B;
cin>>A.first>>A.second>>B.first>>B.second;
drawLine(A.first, A.second, B.first, B.second, red);
glutSwapBuffers();
char c = '';
while(c!='Y'&&c!='y'){
cout<<"Clip? (Y/N)n";
cin>>c;
}
computeNormal();
int chk = check(A, B, n);
glClearColor(0, 0, 0, 1);
glClear(GL_COLOR_BUFFER_BIT);
drawPolygon(V, n, white);
if(chk==-1){
double tE, tL;
Clip(A, B, tE, tL);
if(tE>tL)
chk = 0;
else{
P E = A + (B-A)*tE;
P L = A + (B-A)*tL;
drawLine(E.first, E.second, L.first, L.second, blue);
}
}
if(chk==1)
drawLine(A.first, A.second, B.first, B.second, blue);
glutSwapBuffers();
}
int main(int argc, char *argv){
init(&argc, argv);
}
graphics.hpp
#ifndef GRAPHICS_H
#define GRAPHICS_H
#include<GL/glut.h>
#include<vector>
using namespace std;
extern float red[3];
extern float green[3];
extern float blue[3];
extern float white[3];
int roundoff(double x);
void init(int* argc, char** argv);
void putpixel(float x, float y, float z, float a[3]);
void drawLine(double x1, double y1, double x2, double y2, float a[3]);
void drawRectangle(double x1, double y1, double x2, double y2, float a[3]);
void drawPolygon(vector<pair<double, double>> v, int n, float a[3]);
void MatrixMultiply(vector<vector<double>> &mat1, vector<vector<double>> &mat2, vector<vector<double>> &res,
int n, int m, int r);
void display();
#endif
graphics.cpp
#include<iostream>
#include"graphics.hpp"
float red[3] = { 1.0f, 0.0f, 0.0f };
float green[3] = { 0.0f, 1.0f, 0.0f };
float blue[3] = { 0.0f, 0.0f, 1.0f };
float white[3] = { 1.0f, 1.0f, 1.0f };
int roundoff(double x){
if (x < 0.0)
return (int)(x - 0.5);
else
return (int)(x + 0.5);
}
void init(int *argc, char** argv){
glutInit(argc, argv); // Initialize GLUT
glutInitWindowSize(800, 800); // Set the window's initial width & height
glutInitWindowPosition(0, 0); // Position the window's initial top-left corner
glutCreateWindow("Graphics"); // Create a window with the given title
gluOrtho2D(0, 800, 0, 800); // specifies the projection matrix
glClearColor(0.0f, 0.0f, 0.0f, 1.0f); // Set background color to black and opaque
glClear(GL_COLOR_BUFFER_BIT); // Clear the color buffer (background)
glutDisplayFunc(display); // Register display callback handler for window re-paint
glutMainLoop(); // Enter the event-processing loop
}
void putpixel(float x, float y, float z, float a[3]){
glPointSize(2);
glBegin(GL_POINTS); // HERE THE POINTS SHOULD BE CREATED
glColor3f(a[0], a[1], a[2]);
glVertex3f(x, y, z); // Specify points in 3d plane
std::cout<<x<<' '<<y<<' '<<z<<'n';
glEnd();
}
void drawLine(double x1, double y1, double x2, double y2, float a[3]){
glLineWidth(2.5);
glColor3f(a[0], a[1], a[2]);
glBegin(GL_LINES);
glVertex2d(x1, y1);
glVertex2d(x2, y2);
glEnd();
}
void drawRectangle(double x1, double y1, double x2, double y2, float a[3]){
glColor3f(a[0], a[1], a[2]);
glRectd(x1, y1, x2, y2);
}
void drawPolygon(vector<pair<double, double>> v, int n, float a[3]){
glColor3f(a[0], a[1], a[2]);
glBegin(GL_POLYGON);
for(int i=0; i<n; ++i)
glVertex2d(v[i].first, v[i].second);
glEnd();
}
void MatrixMultiply(vector<vector<double>> &mat1, vector<vector<double>> &mat2, vector<vector<double>> &res,
int n, int m, int r){
int x, i, j;
for(i = 0; i < n; i++){
for (j = 0; j < r; j++){
res[i][j] = 0;
for (x = 0; x < m; x++){
res[i][j] += mat1[i][x] * mat2[x][j];
}
}
}
}
c++ computational-geometry graphics opengl
New contributor
add a comment |
up vote
2
down vote
favorite
I have found the coordinates of the centroid for finding the direction of the normal vectors of the edges of the convex polygons. This method seems to work in the cases I tested. Is this fool proof ? Are there any better alternatives ?
CyrusBeck.cpp
#include<iostream>
#include<cmath>
#include"graphics.hpp"
#define P pair<double, double>
vector<P> V, N;
P C;
double dot(P A, P B){
return (A.first*B.first + A.second*B.second);
}
P operator - (const P &A, const P &B){
return make_pair(A.first-B.first, A.second-B.second);
}
P operator + (const P &A, const P &B){
return make_pair(A.first+B.first, A.second+B.second);
}
P operator * (const P &A, const double t){
return make_pair(t*A.first, t*A.second);
}
void computeNormal(int n = V.size()){
double m;
P prev = V[0];
double x=-1, y;
for(int i=1; i<n; ++i){
m = -(V[i].first-prev.first)/(V[i].second-prev.second);
P d = V[i]-prev;
int lr=1, tb=1;
if(V[i-1].first>C.first)
lr = -1;
if(V[i-1].second>C.second)
tb=-1;
N[i-1].first = lr*abs(cos(atan(m)));
N[i-1].second = tb*abs(sin(atan(m)));
prev = V[i];
}
m = -(V[0].first-prev.first)/(V[0].second-prev.second);
int lr=1, tb=1;
if(V[n-1].first>C.first)
lr = -1;
if(V[n-1].second>C.second)
tb=-1;
N[n-1].first = lr*abs(cos(atan(m)));
N[n-1].second = tb*abs(sin(atan(m)));
}
int check(P A, P B, int n){
P p = B - V[0];
double d1 = dot(p, N[0]);
P q = A - V[0];
double d2 = dot(q, N[0]);
if(d1<0&&d2<0)
return 0;
if(d1>=0&&d2>=0)
return 1;
return -1;
}
void Clip(P A, P B, double &tE, double &tL, int n = V.size()){
tE = 0; tL = 1;
for(int i=0; i<n; ++i){
double d = dot((B-A), N[i]);
if(d==0)
continue;
double t = dot((A-V[i]), N[i])/dot((A-B), N[i]);
if(d>0&&t>tE)
tE = t;
else if(d<0&&t<tL)
tL = t;
}
}
void display(){
cout<<"Enter the number of verticesn";
int n; cin>>n;
V.resize(n);
N.resize(n);
cout<<"Enter the coordinates of the vertices in ordern";
for(int i=0; i<n; ++i){
cin>>V[i].first>>V[i].second;
C = C + V[i];
}
C.first/=n; C.second/=n;
drawPolygon(V, n, white);
glutSwapBuffers();
cout<<"Enter the co-ordinates of the line(4)n";
P A, B;
cin>>A.first>>A.second>>B.first>>B.second;
drawLine(A.first, A.second, B.first, B.second, red);
glutSwapBuffers();
char c = '';
while(c!='Y'&&c!='y'){
cout<<"Clip? (Y/N)n";
cin>>c;
}
computeNormal();
int chk = check(A, B, n);
glClearColor(0, 0, 0, 1);
glClear(GL_COLOR_BUFFER_BIT);
drawPolygon(V, n, white);
if(chk==-1){
double tE, tL;
Clip(A, B, tE, tL);
if(tE>tL)
chk = 0;
else{
P E = A + (B-A)*tE;
P L = A + (B-A)*tL;
drawLine(E.first, E.second, L.first, L.second, blue);
}
}
if(chk==1)
drawLine(A.first, A.second, B.first, B.second, blue);
glutSwapBuffers();
}
int main(int argc, char *argv){
init(&argc, argv);
}
graphics.hpp
#ifndef GRAPHICS_H
#define GRAPHICS_H
#include<GL/glut.h>
#include<vector>
using namespace std;
extern float red[3];
extern float green[3];
extern float blue[3];
extern float white[3];
int roundoff(double x);
void init(int* argc, char** argv);
void putpixel(float x, float y, float z, float a[3]);
void drawLine(double x1, double y1, double x2, double y2, float a[3]);
void drawRectangle(double x1, double y1, double x2, double y2, float a[3]);
void drawPolygon(vector<pair<double, double>> v, int n, float a[3]);
void MatrixMultiply(vector<vector<double>> &mat1, vector<vector<double>> &mat2, vector<vector<double>> &res,
int n, int m, int r);
void display();
#endif
graphics.cpp
#include<iostream>
#include"graphics.hpp"
float red[3] = { 1.0f, 0.0f, 0.0f };
float green[3] = { 0.0f, 1.0f, 0.0f };
float blue[3] = { 0.0f, 0.0f, 1.0f };
float white[3] = { 1.0f, 1.0f, 1.0f };
int roundoff(double x){
if (x < 0.0)
return (int)(x - 0.5);
else
return (int)(x + 0.5);
}
void init(int *argc, char** argv){
glutInit(argc, argv); // Initialize GLUT
glutInitWindowSize(800, 800); // Set the window's initial width & height
glutInitWindowPosition(0, 0); // Position the window's initial top-left corner
glutCreateWindow("Graphics"); // Create a window with the given title
gluOrtho2D(0, 800, 0, 800); // specifies the projection matrix
glClearColor(0.0f, 0.0f, 0.0f, 1.0f); // Set background color to black and opaque
glClear(GL_COLOR_BUFFER_BIT); // Clear the color buffer (background)
glutDisplayFunc(display); // Register display callback handler for window re-paint
glutMainLoop(); // Enter the event-processing loop
}
void putpixel(float x, float y, float z, float a[3]){
glPointSize(2);
glBegin(GL_POINTS); // HERE THE POINTS SHOULD BE CREATED
glColor3f(a[0], a[1], a[2]);
glVertex3f(x, y, z); // Specify points in 3d plane
std::cout<<x<<' '<<y<<' '<<z<<'n';
glEnd();
}
void drawLine(double x1, double y1, double x2, double y2, float a[3]){
glLineWidth(2.5);
glColor3f(a[0], a[1], a[2]);
glBegin(GL_LINES);
glVertex2d(x1, y1);
glVertex2d(x2, y2);
glEnd();
}
void drawRectangle(double x1, double y1, double x2, double y2, float a[3]){
glColor3f(a[0], a[1], a[2]);
glRectd(x1, y1, x2, y2);
}
void drawPolygon(vector<pair<double, double>> v, int n, float a[3]){
glColor3f(a[0], a[1], a[2]);
glBegin(GL_POLYGON);
for(int i=0; i<n; ++i)
glVertex2d(v[i].first, v[i].second);
glEnd();
}
void MatrixMultiply(vector<vector<double>> &mat1, vector<vector<double>> &mat2, vector<vector<double>> &res,
int n, int m, int r){
int x, i, j;
for(i = 0; i < n; i++){
for (j = 0; j < r; j++){
res[i][j] = 0;
for (x = 0; x < m; x++){
res[i][j] += mat1[i][x] * mat2[x][j];
}
}
}
}
c++ computational-geometry graphics opengl
New contributor
Welcome to Code Review. There's a lot to improve in your code, so I hope you get good reviews.
– Zeta
17 hours ago
add a comment |
up vote
2
down vote
favorite
up vote
2
down vote
favorite
I have found the coordinates of the centroid for finding the direction of the normal vectors of the edges of the convex polygons. This method seems to work in the cases I tested. Is this fool proof ? Are there any better alternatives ?
CyrusBeck.cpp
#include<iostream>
#include<cmath>
#include"graphics.hpp"
#define P pair<double, double>
vector<P> V, N;
P C;
double dot(P A, P B){
return (A.first*B.first + A.second*B.second);
}
P operator - (const P &A, const P &B){
return make_pair(A.first-B.first, A.second-B.second);
}
P operator + (const P &A, const P &B){
return make_pair(A.first+B.first, A.second+B.second);
}
P operator * (const P &A, const double t){
return make_pair(t*A.first, t*A.second);
}
void computeNormal(int n = V.size()){
double m;
P prev = V[0];
double x=-1, y;
for(int i=1; i<n; ++i){
m = -(V[i].first-prev.first)/(V[i].second-prev.second);
P d = V[i]-prev;
int lr=1, tb=1;
if(V[i-1].first>C.first)
lr = -1;
if(V[i-1].second>C.second)
tb=-1;
N[i-1].first = lr*abs(cos(atan(m)));
N[i-1].second = tb*abs(sin(atan(m)));
prev = V[i];
}
m = -(V[0].first-prev.first)/(V[0].second-prev.second);
int lr=1, tb=1;
if(V[n-1].first>C.first)
lr = -1;
if(V[n-1].second>C.second)
tb=-1;
N[n-1].first = lr*abs(cos(atan(m)));
N[n-1].second = tb*abs(sin(atan(m)));
}
int check(P A, P B, int n){
P p = B - V[0];
double d1 = dot(p, N[0]);
P q = A - V[0];
double d2 = dot(q, N[0]);
if(d1<0&&d2<0)
return 0;
if(d1>=0&&d2>=0)
return 1;
return -1;
}
void Clip(P A, P B, double &tE, double &tL, int n = V.size()){
tE = 0; tL = 1;
for(int i=0; i<n; ++i){
double d = dot((B-A), N[i]);
if(d==0)
continue;
double t = dot((A-V[i]), N[i])/dot((A-B), N[i]);
if(d>0&&t>tE)
tE = t;
else if(d<0&&t<tL)
tL = t;
}
}
void display(){
cout<<"Enter the number of verticesn";
int n; cin>>n;
V.resize(n);
N.resize(n);
cout<<"Enter the coordinates of the vertices in ordern";
for(int i=0; i<n; ++i){
cin>>V[i].first>>V[i].second;
C = C + V[i];
}
C.first/=n; C.second/=n;
drawPolygon(V, n, white);
glutSwapBuffers();
cout<<"Enter the co-ordinates of the line(4)n";
P A, B;
cin>>A.first>>A.second>>B.first>>B.second;
drawLine(A.first, A.second, B.first, B.second, red);
glutSwapBuffers();
char c = '';
while(c!='Y'&&c!='y'){
cout<<"Clip? (Y/N)n";
cin>>c;
}
computeNormal();
int chk = check(A, B, n);
glClearColor(0, 0, 0, 1);
glClear(GL_COLOR_BUFFER_BIT);
drawPolygon(V, n, white);
if(chk==-1){
double tE, tL;
Clip(A, B, tE, tL);
if(tE>tL)
chk = 0;
else{
P E = A + (B-A)*tE;
P L = A + (B-A)*tL;
drawLine(E.first, E.second, L.first, L.second, blue);
}
}
if(chk==1)
drawLine(A.first, A.second, B.first, B.second, blue);
glutSwapBuffers();
}
int main(int argc, char *argv){
init(&argc, argv);
}
graphics.hpp
#ifndef GRAPHICS_H
#define GRAPHICS_H
#include<GL/glut.h>
#include<vector>
using namespace std;
extern float red[3];
extern float green[3];
extern float blue[3];
extern float white[3];
int roundoff(double x);
void init(int* argc, char** argv);
void putpixel(float x, float y, float z, float a[3]);
void drawLine(double x1, double y1, double x2, double y2, float a[3]);
void drawRectangle(double x1, double y1, double x2, double y2, float a[3]);
void drawPolygon(vector<pair<double, double>> v, int n, float a[3]);
void MatrixMultiply(vector<vector<double>> &mat1, vector<vector<double>> &mat2, vector<vector<double>> &res,
int n, int m, int r);
void display();
#endif
graphics.cpp
#include<iostream>
#include"graphics.hpp"
float red[3] = { 1.0f, 0.0f, 0.0f };
float green[3] = { 0.0f, 1.0f, 0.0f };
float blue[3] = { 0.0f, 0.0f, 1.0f };
float white[3] = { 1.0f, 1.0f, 1.0f };
int roundoff(double x){
if (x < 0.0)
return (int)(x - 0.5);
else
return (int)(x + 0.5);
}
void init(int *argc, char** argv){
glutInit(argc, argv); // Initialize GLUT
glutInitWindowSize(800, 800); // Set the window's initial width & height
glutInitWindowPosition(0, 0); // Position the window's initial top-left corner
glutCreateWindow("Graphics"); // Create a window with the given title
gluOrtho2D(0, 800, 0, 800); // specifies the projection matrix
glClearColor(0.0f, 0.0f, 0.0f, 1.0f); // Set background color to black and opaque
glClear(GL_COLOR_BUFFER_BIT); // Clear the color buffer (background)
glutDisplayFunc(display); // Register display callback handler for window re-paint
glutMainLoop(); // Enter the event-processing loop
}
void putpixel(float x, float y, float z, float a[3]){
glPointSize(2);
glBegin(GL_POINTS); // HERE THE POINTS SHOULD BE CREATED
glColor3f(a[0], a[1], a[2]);
glVertex3f(x, y, z); // Specify points in 3d plane
std::cout<<x<<' '<<y<<' '<<z<<'n';
glEnd();
}
void drawLine(double x1, double y1, double x2, double y2, float a[3]){
glLineWidth(2.5);
glColor3f(a[0], a[1], a[2]);
glBegin(GL_LINES);
glVertex2d(x1, y1);
glVertex2d(x2, y2);
glEnd();
}
void drawRectangle(double x1, double y1, double x2, double y2, float a[3]){
glColor3f(a[0], a[1], a[2]);
glRectd(x1, y1, x2, y2);
}
void drawPolygon(vector<pair<double, double>> v, int n, float a[3]){
glColor3f(a[0], a[1], a[2]);
glBegin(GL_POLYGON);
for(int i=0; i<n; ++i)
glVertex2d(v[i].first, v[i].second);
glEnd();
}
void MatrixMultiply(vector<vector<double>> &mat1, vector<vector<double>> &mat2, vector<vector<double>> &res,
int n, int m, int r){
int x, i, j;
for(i = 0; i < n; i++){
for (j = 0; j < r; j++){
res[i][j] = 0;
for (x = 0; x < m; x++){
res[i][j] += mat1[i][x] * mat2[x][j];
}
}
}
}
c++ computational-geometry graphics opengl
New contributor
I have found the coordinates of the centroid for finding the direction of the normal vectors of the edges of the convex polygons. This method seems to work in the cases I tested. Is this fool proof ? Are there any better alternatives ?
CyrusBeck.cpp
#include<iostream>
#include<cmath>
#include"graphics.hpp"
#define P pair<double, double>
vector<P> V, N;
P C;
double dot(P A, P B){
return (A.first*B.first + A.second*B.second);
}
P operator - (const P &A, const P &B){
return make_pair(A.first-B.first, A.second-B.second);
}
P operator + (const P &A, const P &B){
return make_pair(A.first+B.first, A.second+B.second);
}
P operator * (const P &A, const double t){
return make_pair(t*A.first, t*A.second);
}
void computeNormal(int n = V.size()){
double m;
P prev = V[0];
double x=-1, y;
for(int i=1; i<n; ++i){
m = -(V[i].first-prev.first)/(V[i].second-prev.second);
P d = V[i]-prev;
int lr=1, tb=1;
if(V[i-1].first>C.first)
lr = -1;
if(V[i-1].second>C.second)
tb=-1;
N[i-1].first = lr*abs(cos(atan(m)));
N[i-1].second = tb*abs(sin(atan(m)));
prev = V[i];
}
m = -(V[0].first-prev.first)/(V[0].second-prev.second);
int lr=1, tb=1;
if(V[n-1].first>C.first)
lr = -1;
if(V[n-1].second>C.second)
tb=-1;
N[n-1].first = lr*abs(cos(atan(m)));
N[n-1].second = tb*abs(sin(atan(m)));
}
int check(P A, P B, int n){
P p = B - V[0];
double d1 = dot(p, N[0]);
P q = A - V[0];
double d2 = dot(q, N[0]);
if(d1<0&&d2<0)
return 0;
if(d1>=0&&d2>=0)
return 1;
return -1;
}
void Clip(P A, P B, double &tE, double &tL, int n = V.size()){
tE = 0; tL = 1;
for(int i=0; i<n; ++i){
double d = dot((B-A), N[i]);
if(d==0)
continue;
double t = dot((A-V[i]), N[i])/dot((A-B), N[i]);
if(d>0&&t>tE)
tE = t;
else if(d<0&&t<tL)
tL = t;
}
}
void display(){
cout<<"Enter the number of verticesn";
int n; cin>>n;
V.resize(n);
N.resize(n);
cout<<"Enter the coordinates of the vertices in ordern";
for(int i=0; i<n; ++i){
cin>>V[i].first>>V[i].second;
C = C + V[i];
}
C.first/=n; C.second/=n;
drawPolygon(V, n, white);
glutSwapBuffers();
cout<<"Enter the co-ordinates of the line(4)n";
P A, B;
cin>>A.first>>A.second>>B.first>>B.second;
drawLine(A.first, A.second, B.first, B.second, red);
glutSwapBuffers();
char c = '';
while(c!='Y'&&c!='y'){
cout<<"Clip? (Y/N)n";
cin>>c;
}
computeNormal();
int chk = check(A, B, n);
glClearColor(0, 0, 0, 1);
glClear(GL_COLOR_BUFFER_BIT);
drawPolygon(V, n, white);
if(chk==-1){
double tE, tL;
Clip(A, B, tE, tL);
if(tE>tL)
chk = 0;
else{
P E = A + (B-A)*tE;
P L = A + (B-A)*tL;
drawLine(E.first, E.second, L.first, L.second, blue);
}
}
if(chk==1)
drawLine(A.first, A.second, B.first, B.second, blue);
glutSwapBuffers();
}
int main(int argc, char *argv){
init(&argc, argv);
}
graphics.hpp
#ifndef GRAPHICS_H
#define GRAPHICS_H
#include<GL/glut.h>
#include<vector>
using namespace std;
extern float red[3];
extern float green[3];
extern float blue[3];
extern float white[3];
int roundoff(double x);
void init(int* argc, char** argv);
void putpixel(float x, float y, float z, float a[3]);
void drawLine(double x1, double y1, double x2, double y2, float a[3]);
void drawRectangle(double x1, double y1, double x2, double y2, float a[3]);
void drawPolygon(vector<pair<double, double>> v, int n, float a[3]);
void MatrixMultiply(vector<vector<double>> &mat1, vector<vector<double>> &mat2, vector<vector<double>> &res,
int n, int m, int r);
void display();
#endif
graphics.cpp
#include<iostream>
#include"graphics.hpp"
float red[3] = { 1.0f, 0.0f, 0.0f };
float green[3] = { 0.0f, 1.0f, 0.0f };
float blue[3] = { 0.0f, 0.0f, 1.0f };
float white[3] = { 1.0f, 1.0f, 1.0f };
int roundoff(double x){
if (x < 0.0)
return (int)(x - 0.5);
else
return (int)(x + 0.5);
}
void init(int *argc, char** argv){
glutInit(argc, argv); // Initialize GLUT
glutInitWindowSize(800, 800); // Set the window's initial width & height
glutInitWindowPosition(0, 0); // Position the window's initial top-left corner
glutCreateWindow("Graphics"); // Create a window with the given title
gluOrtho2D(0, 800, 0, 800); // specifies the projection matrix
glClearColor(0.0f, 0.0f, 0.0f, 1.0f); // Set background color to black and opaque
glClear(GL_COLOR_BUFFER_BIT); // Clear the color buffer (background)
glutDisplayFunc(display); // Register display callback handler for window re-paint
glutMainLoop(); // Enter the event-processing loop
}
void putpixel(float x, float y, float z, float a[3]){
glPointSize(2);
glBegin(GL_POINTS); // HERE THE POINTS SHOULD BE CREATED
glColor3f(a[0], a[1], a[2]);
glVertex3f(x, y, z); // Specify points in 3d plane
std::cout<<x<<' '<<y<<' '<<z<<'n';
glEnd();
}
void drawLine(double x1, double y1, double x2, double y2, float a[3]){
glLineWidth(2.5);
glColor3f(a[0], a[1], a[2]);
glBegin(GL_LINES);
glVertex2d(x1, y1);
glVertex2d(x2, y2);
glEnd();
}
void drawRectangle(double x1, double y1, double x2, double y2, float a[3]){
glColor3f(a[0], a[1], a[2]);
glRectd(x1, y1, x2, y2);
}
void drawPolygon(vector<pair<double, double>> v, int n, float a[3]){
glColor3f(a[0], a[1], a[2]);
glBegin(GL_POLYGON);
for(int i=0; i<n; ++i)
glVertex2d(v[i].first, v[i].second);
glEnd();
}
void MatrixMultiply(vector<vector<double>> &mat1, vector<vector<double>> &mat2, vector<vector<double>> &res,
int n, int m, int r){
int x, i, j;
for(i = 0; i < n; i++){
for (j = 0; j < r; j++){
res[i][j] = 0;
for (x = 0; x < m; x++){
res[i][j] += mat1[i][x] * mat2[x][j];
}
}
}
}
c++ computational-geometry graphics opengl
c++ computational-geometry graphics opengl
New contributor
New contributor
New contributor
asked 21 hours ago
Gaurav Pant
112
112
New contributor
New contributor
Welcome to Code Review. There's a lot to improve in your code, so I hope you get good reviews.
– Zeta
17 hours ago
add a comment |
Welcome to Code Review. There's a lot to improve in your code, so I hope you get good reviews.
– Zeta
17 hours ago
Welcome to Code Review. There's a lot to improve in your code, so I hope you get good reviews.
– Zeta
17 hours ago
Welcome to Code Review. There's a lot to improve in your code, so I hope you get good reviews.
– Zeta
17 hours ago
add a comment |
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Gaurav Pant is a new contributor. Be nice, and check out our Code of Conduct.
Gaurav Pant is a new contributor. Be nice, and check out our Code of Conduct.
Gaurav Pant is a new contributor. Be nice, and check out our Code of Conduct.
Gaurav Pant is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f207530%2fimplementing-cyrus-beck-algorithm-for-convex-polygons%23new-answer', 'question_page');
}
);
Post as a guest
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Welcome to Code Review. There's a lot to improve in your code, so I hope you get good reviews.
– Zeta
17 hours ago