Find the limit of $lim_{ntoinfty}((n^3+n^2)^{1/3}-(n^3+1)^{1/3})$ without using the identity...
Find the limit of the sequence $$lim_{ntoinfty}((n^3+n^2)^{1/3}-(n^3+1)^{1/3})$$
I showed that the limit is $1/3$, using the identity $$a^3-b^3=(a-b)(a^2+ab+b^2)$$
we get the sequence is equal to
$$frac{n^3+n^2-n^3-1}{(n^3+n^2)^{2/3}+(n^6+n^5+n^3+n^2)^{1/3}+(n^3+1)^{2/3}}longrightarrowfrac{1}{3}$$
but I couldn't manage to solve it without using the above identity, and I was wondering if it is possible.
sequences-and-series
New contributor
add a comment |
Find the limit of the sequence $$lim_{ntoinfty}((n^3+n^2)^{1/3}-(n^3+1)^{1/3})$$
I showed that the limit is $1/3$, using the identity $$a^3-b^3=(a-b)(a^2+ab+b^2)$$
we get the sequence is equal to
$$frac{n^3+n^2-n^3-1}{(n^3+n^2)^{2/3}+(n^6+n^5+n^3+n^2)^{1/3}+(n^3+1)^{2/3}}longrightarrowfrac{1}{3}$$
but I couldn't manage to solve it without using the above identity, and I was wondering if it is possible.
sequences-and-series
New contributor
That's a sequence, not a series.
– José Carlos Santos
Dec 22 at 9:45
Oops, corrected it.
– Belkan
Dec 22 at 9:47
add a comment |
Find the limit of the sequence $$lim_{ntoinfty}((n^3+n^2)^{1/3}-(n^3+1)^{1/3})$$
I showed that the limit is $1/3$, using the identity $$a^3-b^3=(a-b)(a^2+ab+b^2)$$
we get the sequence is equal to
$$frac{n^3+n^2-n^3-1}{(n^3+n^2)^{2/3}+(n^6+n^5+n^3+n^2)^{1/3}+(n^3+1)^{2/3}}longrightarrowfrac{1}{3}$$
but I couldn't manage to solve it without using the above identity, and I was wondering if it is possible.
sequences-and-series
New contributor
Find the limit of the sequence $$lim_{ntoinfty}((n^3+n^2)^{1/3}-(n^3+1)^{1/3})$$
I showed that the limit is $1/3$, using the identity $$a^3-b^3=(a-b)(a^2+ab+b^2)$$
we get the sequence is equal to
$$frac{n^3+n^2-n^3-1}{(n^3+n^2)^{2/3}+(n^6+n^5+n^3+n^2)^{1/3}+(n^3+1)^{2/3}}longrightarrowfrac{1}{3}$$
but I couldn't manage to solve it without using the above identity, and I was wondering if it is possible.
sequences-and-series
sequences-and-series
New contributor
New contributor
edited Dec 22 at 11:22
Asaf Karagila♦
301k32423755
301k32423755
New contributor
asked Dec 22 at 9:41
Belkan
587
587
New contributor
New contributor
That's a sequence, not a series.
– José Carlos Santos
Dec 22 at 9:45
Oops, corrected it.
– Belkan
Dec 22 at 9:47
add a comment |
That's a sequence, not a series.
– José Carlos Santos
Dec 22 at 9:45
Oops, corrected it.
– Belkan
Dec 22 at 9:47
That's a sequence, not a series.
– José Carlos Santos
Dec 22 at 9:45
That's a sequence, not a series.
– José Carlos Santos
Dec 22 at 9:45
Oops, corrected it.
– Belkan
Dec 22 at 9:47
Oops, corrected it.
– Belkan
Dec 22 at 9:47
add a comment |
3 Answers
3
active
oldest
votes
$$
begin{align}
lim_{ntoinfty}((n^3+n^2)^{1/3}-(n^3+1)^{1/3})
&=lim_{ntoinfty}nleft(left(1+frac1nright)^{1/3}-left(1+frac1{n^3}right)^{1/3}right)\
&=lim_{ntoinfty}nleft(left[1+frac1{3n}+O!left(frac1{n^2}right)right]-left[1+O!left(frac1{n^3}right)right]right)\
&=lim_{ntoinfty}left(frac13+O!left(frac1nright)right)\
&=frac13
end{align}
$$
add a comment |
My favorite way is to consider
$$
f(x)=left(frac{1}{x^3}+frac{1}{x^2}right)^{1/3}-left(frac{1}{x^3}+1right)^{1/3}
=frac{sqrt[3]{1+x}-sqrt[3]{1+x^3}}{x}
$$
so that your sequence is $f(1/n)$ and so you can compute
$$
lim_{xto0^+}f(x)=lim_{xto0}frac{(1+x/3+o(x)-(1+x^3/3+o(x^3))}{x}=frac{1}{3}
$$
Without Taylor expansion, the sought limit is the derivative at $0$ of $g(x)=sqrt[3]{1+x}-sqrt[3]{1+x^3}$, so
$$
g'(x)=frac{1}{3sqrt[3]{(1+x)^2}}-frac{3x^2}{3sqrt[3]{(1+x^3)^2}}
$$
and $g'(0)=1/3$.
add a comment |
1) $n(1+1/n )^{1/3} = $
$dfrac{(1+1/n)^{1/3}}{1/n}.$
2) $n(1+1/n^3 )^{1/3} =$
$dfrac{(1+1/n^3)^{1/3}}{1/n}.$
$small{dfrac{((1+1/n)^{1/3} -1) -((1+1/n^3)^{1/3}-1)}{1/n}}$
$small{=dfrac{(1+1/n)^{1/3} -1}{1/n} - (1/n^2)dfrac{(1+1/n^3)^{1/3} -1}{1/n^3}.}$
First term:
Let $f(x)=x^{1/3}$:
$lim_{n rightarrow infty}dfrac{(1+1/n)^{1/3} -1}{1/n}=$
$f'(x)_{x=1}= (1/3);$
Second term:
$small{-lim_{n rightarrow infty}(1/n^2)dfrac{(1+1/n^3)^{1/3}-1}{1/n^3}= }$
$small{lim_{n rightarrow infty}(1/n^2)×}$
$small{lim_{n rightarrow infty}dfrac{(1+1/n^3)^{1/3}-1}{1/n^3}=}$
$small{0 cdot (1/3)=0.}$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Belkan is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3049256%2ffind-the-limit-of-lim-n-to-inftyn3n21-3-n311-3-without-usi%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$$
begin{align}
lim_{ntoinfty}((n^3+n^2)^{1/3}-(n^3+1)^{1/3})
&=lim_{ntoinfty}nleft(left(1+frac1nright)^{1/3}-left(1+frac1{n^3}right)^{1/3}right)\
&=lim_{ntoinfty}nleft(left[1+frac1{3n}+O!left(frac1{n^2}right)right]-left[1+O!left(frac1{n^3}right)right]right)\
&=lim_{ntoinfty}left(frac13+O!left(frac1nright)right)\
&=frac13
end{align}
$$
add a comment |
$$
begin{align}
lim_{ntoinfty}((n^3+n^2)^{1/3}-(n^3+1)^{1/3})
&=lim_{ntoinfty}nleft(left(1+frac1nright)^{1/3}-left(1+frac1{n^3}right)^{1/3}right)\
&=lim_{ntoinfty}nleft(left[1+frac1{3n}+O!left(frac1{n^2}right)right]-left[1+O!left(frac1{n^3}right)right]right)\
&=lim_{ntoinfty}left(frac13+O!left(frac1nright)right)\
&=frac13
end{align}
$$
add a comment |
$$
begin{align}
lim_{ntoinfty}((n^3+n^2)^{1/3}-(n^3+1)^{1/3})
&=lim_{ntoinfty}nleft(left(1+frac1nright)^{1/3}-left(1+frac1{n^3}right)^{1/3}right)\
&=lim_{ntoinfty}nleft(left[1+frac1{3n}+O!left(frac1{n^2}right)right]-left[1+O!left(frac1{n^3}right)right]right)\
&=lim_{ntoinfty}left(frac13+O!left(frac1nright)right)\
&=frac13
end{align}
$$
$$
begin{align}
lim_{ntoinfty}((n^3+n^2)^{1/3}-(n^3+1)^{1/3})
&=lim_{ntoinfty}nleft(left(1+frac1nright)^{1/3}-left(1+frac1{n^3}right)^{1/3}right)\
&=lim_{ntoinfty}nleft(left[1+frac1{3n}+O!left(frac1{n^2}right)right]-left[1+O!left(frac1{n^3}right)right]right)\
&=lim_{ntoinfty}left(frac13+O!left(frac1nright)right)\
&=frac13
end{align}
$$
answered Dec 22 at 9:50
robjohn♦
264k27303623
264k27303623
add a comment |
add a comment |
My favorite way is to consider
$$
f(x)=left(frac{1}{x^3}+frac{1}{x^2}right)^{1/3}-left(frac{1}{x^3}+1right)^{1/3}
=frac{sqrt[3]{1+x}-sqrt[3]{1+x^3}}{x}
$$
so that your sequence is $f(1/n)$ and so you can compute
$$
lim_{xto0^+}f(x)=lim_{xto0}frac{(1+x/3+o(x)-(1+x^3/3+o(x^3))}{x}=frac{1}{3}
$$
Without Taylor expansion, the sought limit is the derivative at $0$ of $g(x)=sqrt[3]{1+x}-sqrt[3]{1+x^3}$, so
$$
g'(x)=frac{1}{3sqrt[3]{(1+x)^2}}-frac{3x^2}{3sqrt[3]{(1+x^3)^2}}
$$
and $g'(0)=1/3$.
add a comment |
My favorite way is to consider
$$
f(x)=left(frac{1}{x^3}+frac{1}{x^2}right)^{1/3}-left(frac{1}{x^3}+1right)^{1/3}
=frac{sqrt[3]{1+x}-sqrt[3]{1+x^3}}{x}
$$
so that your sequence is $f(1/n)$ and so you can compute
$$
lim_{xto0^+}f(x)=lim_{xto0}frac{(1+x/3+o(x)-(1+x^3/3+o(x^3))}{x}=frac{1}{3}
$$
Without Taylor expansion, the sought limit is the derivative at $0$ of $g(x)=sqrt[3]{1+x}-sqrt[3]{1+x^3}$, so
$$
g'(x)=frac{1}{3sqrt[3]{(1+x)^2}}-frac{3x^2}{3sqrt[3]{(1+x^3)^2}}
$$
and $g'(0)=1/3$.
add a comment |
My favorite way is to consider
$$
f(x)=left(frac{1}{x^3}+frac{1}{x^2}right)^{1/3}-left(frac{1}{x^3}+1right)^{1/3}
=frac{sqrt[3]{1+x}-sqrt[3]{1+x^3}}{x}
$$
so that your sequence is $f(1/n)$ and so you can compute
$$
lim_{xto0^+}f(x)=lim_{xto0}frac{(1+x/3+o(x)-(1+x^3/3+o(x^3))}{x}=frac{1}{3}
$$
Without Taylor expansion, the sought limit is the derivative at $0$ of $g(x)=sqrt[3]{1+x}-sqrt[3]{1+x^3}$, so
$$
g'(x)=frac{1}{3sqrt[3]{(1+x)^2}}-frac{3x^2}{3sqrt[3]{(1+x^3)^2}}
$$
and $g'(0)=1/3$.
My favorite way is to consider
$$
f(x)=left(frac{1}{x^3}+frac{1}{x^2}right)^{1/3}-left(frac{1}{x^3}+1right)^{1/3}
=frac{sqrt[3]{1+x}-sqrt[3]{1+x^3}}{x}
$$
so that your sequence is $f(1/n)$ and so you can compute
$$
lim_{xto0^+}f(x)=lim_{xto0}frac{(1+x/3+o(x)-(1+x^3/3+o(x^3))}{x}=frac{1}{3}
$$
Without Taylor expansion, the sought limit is the derivative at $0$ of $g(x)=sqrt[3]{1+x}-sqrt[3]{1+x^3}$, so
$$
g'(x)=frac{1}{3sqrt[3]{(1+x)^2}}-frac{3x^2}{3sqrt[3]{(1+x^3)^2}}
$$
and $g'(0)=1/3$.
answered Dec 22 at 10:01
egreg
177k1484200
177k1484200
add a comment |
add a comment |
1) $n(1+1/n )^{1/3} = $
$dfrac{(1+1/n)^{1/3}}{1/n}.$
2) $n(1+1/n^3 )^{1/3} =$
$dfrac{(1+1/n^3)^{1/3}}{1/n}.$
$small{dfrac{((1+1/n)^{1/3} -1) -((1+1/n^3)^{1/3}-1)}{1/n}}$
$small{=dfrac{(1+1/n)^{1/3} -1}{1/n} - (1/n^2)dfrac{(1+1/n^3)^{1/3} -1}{1/n^3}.}$
First term:
Let $f(x)=x^{1/3}$:
$lim_{n rightarrow infty}dfrac{(1+1/n)^{1/3} -1}{1/n}=$
$f'(x)_{x=1}= (1/3);$
Second term:
$small{-lim_{n rightarrow infty}(1/n^2)dfrac{(1+1/n^3)^{1/3}-1}{1/n^3}= }$
$small{lim_{n rightarrow infty}(1/n^2)×}$
$small{lim_{n rightarrow infty}dfrac{(1+1/n^3)^{1/3}-1}{1/n^3}=}$
$small{0 cdot (1/3)=0.}$
add a comment |
1) $n(1+1/n )^{1/3} = $
$dfrac{(1+1/n)^{1/3}}{1/n}.$
2) $n(1+1/n^3 )^{1/3} =$
$dfrac{(1+1/n^3)^{1/3}}{1/n}.$
$small{dfrac{((1+1/n)^{1/3} -1) -((1+1/n^3)^{1/3}-1)}{1/n}}$
$small{=dfrac{(1+1/n)^{1/3} -1}{1/n} - (1/n^2)dfrac{(1+1/n^3)^{1/3} -1}{1/n^3}.}$
First term:
Let $f(x)=x^{1/3}$:
$lim_{n rightarrow infty}dfrac{(1+1/n)^{1/3} -1}{1/n}=$
$f'(x)_{x=1}= (1/3);$
Second term:
$small{-lim_{n rightarrow infty}(1/n^2)dfrac{(1+1/n^3)^{1/3}-1}{1/n^3}= }$
$small{lim_{n rightarrow infty}(1/n^2)×}$
$small{lim_{n rightarrow infty}dfrac{(1+1/n^3)^{1/3}-1}{1/n^3}=}$
$small{0 cdot (1/3)=0.}$
add a comment |
1) $n(1+1/n )^{1/3} = $
$dfrac{(1+1/n)^{1/3}}{1/n}.$
2) $n(1+1/n^3 )^{1/3} =$
$dfrac{(1+1/n^3)^{1/3}}{1/n}.$
$small{dfrac{((1+1/n)^{1/3} -1) -((1+1/n^3)^{1/3}-1)}{1/n}}$
$small{=dfrac{(1+1/n)^{1/3} -1}{1/n} - (1/n^2)dfrac{(1+1/n^3)^{1/3} -1}{1/n^3}.}$
First term:
Let $f(x)=x^{1/3}$:
$lim_{n rightarrow infty}dfrac{(1+1/n)^{1/3} -1}{1/n}=$
$f'(x)_{x=1}= (1/3);$
Second term:
$small{-lim_{n rightarrow infty}(1/n^2)dfrac{(1+1/n^3)^{1/3}-1}{1/n^3}= }$
$small{lim_{n rightarrow infty}(1/n^2)×}$
$small{lim_{n rightarrow infty}dfrac{(1+1/n^3)^{1/3}-1}{1/n^3}=}$
$small{0 cdot (1/3)=0.}$
1) $n(1+1/n )^{1/3} = $
$dfrac{(1+1/n)^{1/3}}{1/n}.$
2) $n(1+1/n^3 )^{1/3} =$
$dfrac{(1+1/n^3)^{1/3}}{1/n}.$
$small{dfrac{((1+1/n)^{1/3} -1) -((1+1/n^3)^{1/3}-1)}{1/n}}$
$small{=dfrac{(1+1/n)^{1/3} -1}{1/n} - (1/n^2)dfrac{(1+1/n^3)^{1/3} -1}{1/n^3}.}$
First term:
Let $f(x)=x^{1/3}$:
$lim_{n rightarrow infty}dfrac{(1+1/n)^{1/3} -1}{1/n}=$
$f'(x)_{x=1}= (1/3);$
Second term:
$small{-lim_{n rightarrow infty}(1/n^2)dfrac{(1+1/n^3)^{1/3}-1}{1/n^3}= }$
$small{lim_{n rightarrow infty}(1/n^2)×}$
$small{lim_{n rightarrow infty}dfrac{(1+1/n^3)^{1/3}-1}{1/n^3}=}$
$small{0 cdot (1/3)=0.}$
edited Dec 22 at 10:56
answered Dec 22 at 10:30
Peter Szilas
10.6k2720
10.6k2720
add a comment |
add a comment |
Belkan is a new contributor. Be nice, and check out our Code of Conduct.
Belkan is a new contributor. Be nice, and check out our Code of Conduct.
Belkan is a new contributor. Be nice, and check out our Code of Conduct.
Belkan is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3049256%2ffind-the-limit-of-lim-n-to-inftyn3n21-3-n311-3-without-usi%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
That's a sequence, not a series.
– José Carlos Santos
Dec 22 at 9:45
Oops, corrected it.
– Belkan
Dec 22 at 9:47