Find the limit of $lim_{ntoinfty}((n^3+n^2)^{1/3}-(n^3+1)^{1/3})$ without using the identity...












1














Find the limit of the sequence $$lim_{ntoinfty}((n^3+n^2)^{1/3}-(n^3+1)^{1/3})$$
I showed that the limit is $1/3$, using the identity $$a^3-b^3=(a-b)(a^2+ab+b^2)$$
we get the sequence is equal to
$$frac{n^3+n^2-n^3-1}{(n^3+n^2)^{2/3}+(n^6+n^5+n^3+n^2)^{1/3}+(n^3+1)^{2/3}}longrightarrowfrac{1}{3}$$



but I couldn't manage to solve it without using the above identity, and I was wondering if it is possible.










share|cite|improve this question









New contributor




Belkan is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.




















  • That's a sequence, not a series.
    – José Carlos Santos
    Dec 22 at 9:45










  • Oops, corrected it.
    – Belkan
    Dec 22 at 9:47
















1














Find the limit of the sequence $$lim_{ntoinfty}((n^3+n^2)^{1/3}-(n^3+1)^{1/3})$$
I showed that the limit is $1/3$, using the identity $$a^3-b^3=(a-b)(a^2+ab+b^2)$$
we get the sequence is equal to
$$frac{n^3+n^2-n^3-1}{(n^3+n^2)^{2/3}+(n^6+n^5+n^3+n^2)^{1/3}+(n^3+1)^{2/3}}longrightarrowfrac{1}{3}$$



but I couldn't manage to solve it without using the above identity, and I was wondering if it is possible.










share|cite|improve this question









New contributor




Belkan is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.




















  • That's a sequence, not a series.
    – José Carlos Santos
    Dec 22 at 9:45










  • Oops, corrected it.
    – Belkan
    Dec 22 at 9:47














1












1








1







Find the limit of the sequence $$lim_{ntoinfty}((n^3+n^2)^{1/3}-(n^3+1)^{1/3})$$
I showed that the limit is $1/3$, using the identity $$a^3-b^3=(a-b)(a^2+ab+b^2)$$
we get the sequence is equal to
$$frac{n^3+n^2-n^3-1}{(n^3+n^2)^{2/3}+(n^6+n^5+n^3+n^2)^{1/3}+(n^3+1)^{2/3}}longrightarrowfrac{1}{3}$$



but I couldn't manage to solve it without using the above identity, and I was wondering if it is possible.










share|cite|improve this question









New contributor




Belkan is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











Find the limit of the sequence $$lim_{ntoinfty}((n^3+n^2)^{1/3}-(n^3+1)^{1/3})$$
I showed that the limit is $1/3$, using the identity $$a^3-b^3=(a-b)(a^2+ab+b^2)$$
we get the sequence is equal to
$$frac{n^3+n^2-n^3-1}{(n^3+n^2)^{2/3}+(n^6+n^5+n^3+n^2)^{1/3}+(n^3+1)^{2/3}}longrightarrowfrac{1}{3}$$



but I couldn't manage to solve it without using the above identity, and I was wondering if it is possible.







sequences-and-series






share|cite|improve this question









New contributor




Belkan is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




Belkan is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited Dec 22 at 11:22









Asaf Karagila

301k32423755




301k32423755






New contributor




Belkan is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked Dec 22 at 9:41









Belkan

587




587




New contributor




Belkan is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Belkan is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Belkan is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.












  • That's a sequence, not a series.
    – José Carlos Santos
    Dec 22 at 9:45










  • Oops, corrected it.
    – Belkan
    Dec 22 at 9:47


















  • That's a sequence, not a series.
    – José Carlos Santos
    Dec 22 at 9:45










  • Oops, corrected it.
    – Belkan
    Dec 22 at 9:47
















That's a sequence, not a series.
– José Carlos Santos
Dec 22 at 9:45




That's a sequence, not a series.
– José Carlos Santos
Dec 22 at 9:45












Oops, corrected it.
– Belkan
Dec 22 at 9:47




Oops, corrected it.
– Belkan
Dec 22 at 9:47










3 Answers
3






active

oldest

votes


















4














$$
begin{align}
lim_{ntoinfty}((n^3+n^2)^{1/3}-(n^3+1)^{1/3})
&=lim_{ntoinfty}nleft(left(1+frac1nright)^{1/3}-left(1+frac1{n^3}right)^{1/3}right)\
&=lim_{ntoinfty}nleft(left[1+frac1{3n}+O!left(frac1{n^2}right)right]-left[1+O!left(frac1{n^3}right)right]right)\
&=lim_{ntoinfty}left(frac13+O!left(frac1nright)right)\
&=frac13
end{align}
$$






share|cite|improve this answer





























    3














    My favorite way is to consider
    $$
    f(x)=left(frac{1}{x^3}+frac{1}{x^2}right)^{1/3}-left(frac{1}{x^3}+1right)^{1/3}
    =frac{sqrt[3]{1+x}-sqrt[3]{1+x^3}}{x}
    $$

    so that your sequence is $f(1/n)$ and so you can compute
    $$
    lim_{xto0^+}f(x)=lim_{xto0}frac{(1+x/3+o(x)-(1+x^3/3+o(x^3))}{x}=frac{1}{3}
    $$

    Without Taylor expansion, the sought limit is the derivative at $0$ of $g(x)=sqrt[3]{1+x}-sqrt[3]{1+x^3}$, so
    $$
    g'(x)=frac{1}{3sqrt[3]{(1+x)^2}}-frac{3x^2}{3sqrt[3]{(1+x^3)^2}}
    $$

    and $g'(0)=1/3$.






    share|cite|improve this answer





























      0














      1) $n(1+1/n )^{1/3} = $



      $dfrac{(1+1/n)^{1/3}}{1/n}.$



      2) $n(1+1/n^3 )^{1/3} =$



      $dfrac{(1+1/n^3)^{1/3}}{1/n}.$



      $small{dfrac{((1+1/n)^{1/3} -1) -((1+1/n^3)^{1/3}-1)}{1/n}}$



      $small{=dfrac{(1+1/n)^{1/3} -1}{1/n} - (1/n^2)dfrac{(1+1/n^3)^{1/3} -1}{1/n^3}.}$



      First term:



      Let $f(x)=x^{1/3}$:



      $lim_{n rightarrow infty}dfrac{(1+1/n)^{1/3} -1}{1/n}=$



      $f'(x)_{x=1}= (1/3);$



      Second term:



      $small{-lim_{n rightarrow infty}(1/n^2)dfrac{(1+1/n^3)^{1/3}-1}{1/n^3}= }$



      $small{lim_{n rightarrow infty}(1/n^2)×}$



      $small{lim_{n rightarrow infty}dfrac{(1+1/n^3)^{1/3}-1}{1/n^3}=}$



      $small{0 cdot (1/3)=0.}$






      share|cite|improve this answer























        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });






        Belkan is a new contributor. Be nice, and check out our Code of Conduct.










        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3049256%2ffind-the-limit-of-lim-n-to-inftyn3n21-3-n311-3-without-usi%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        4














        $$
        begin{align}
        lim_{ntoinfty}((n^3+n^2)^{1/3}-(n^3+1)^{1/3})
        &=lim_{ntoinfty}nleft(left(1+frac1nright)^{1/3}-left(1+frac1{n^3}right)^{1/3}right)\
        &=lim_{ntoinfty}nleft(left[1+frac1{3n}+O!left(frac1{n^2}right)right]-left[1+O!left(frac1{n^3}right)right]right)\
        &=lim_{ntoinfty}left(frac13+O!left(frac1nright)right)\
        &=frac13
        end{align}
        $$






        share|cite|improve this answer


























          4














          $$
          begin{align}
          lim_{ntoinfty}((n^3+n^2)^{1/3}-(n^3+1)^{1/3})
          &=lim_{ntoinfty}nleft(left(1+frac1nright)^{1/3}-left(1+frac1{n^3}right)^{1/3}right)\
          &=lim_{ntoinfty}nleft(left[1+frac1{3n}+O!left(frac1{n^2}right)right]-left[1+O!left(frac1{n^3}right)right]right)\
          &=lim_{ntoinfty}left(frac13+O!left(frac1nright)right)\
          &=frac13
          end{align}
          $$






          share|cite|improve this answer
























            4












            4








            4






            $$
            begin{align}
            lim_{ntoinfty}((n^3+n^2)^{1/3}-(n^3+1)^{1/3})
            &=lim_{ntoinfty}nleft(left(1+frac1nright)^{1/3}-left(1+frac1{n^3}right)^{1/3}right)\
            &=lim_{ntoinfty}nleft(left[1+frac1{3n}+O!left(frac1{n^2}right)right]-left[1+O!left(frac1{n^3}right)right]right)\
            &=lim_{ntoinfty}left(frac13+O!left(frac1nright)right)\
            &=frac13
            end{align}
            $$






            share|cite|improve this answer












            $$
            begin{align}
            lim_{ntoinfty}((n^3+n^2)^{1/3}-(n^3+1)^{1/3})
            &=lim_{ntoinfty}nleft(left(1+frac1nright)^{1/3}-left(1+frac1{n^3}right)^{1/3}right)\
            &=lim_{ntoinfty}nleft(left[1+frac1{3n}+O!left(frac1{n^2}right)right]-left[1+O!left(frac1{n^3}right)right]right)\
            &=lim_{ntoinfty}left(frac13+O!left(frac1nright)right)\
            &=frac13
            end{align}
            $$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Dec 22 at 9:50









            robjohn

            264k27303623




            264k27303623























                3














                My favorite way is to consider
                $$
                f(x)=left(frac{1}{x^3}+frac{1}{x^2}right)^{1/3}-left(frac{1}{x^3}+1right)^{1/3}
                =frac{sqrt[3]{1+x}-sqrt[3]{1+x^3}}{x}
                $$

                so that your sequence is $f(1/n)$ and so you can compute
                $$
                lim_{xto0^+}f(x)=lim_{xto0}frac{(1+x/3+o(x)-(1+x^3/3+o(x^3))}{x}=frac{1}{3}
                $$

                Without Taylor expansion, the sought limit is the derivative at $0$ of $g(x)=sqrt[3]{1+x}-sqrt[3]{1+x^3}$, so
                $$
                g'(x)=frac{1}{3sqrt[3]{(1+x)^2}}-frac{3x^2}{3sqrt[3]{(1+x^3)^2}}
                $$

                and $g'(0)=1/3$.






                share|cite|improve this answer


























                  3














                  My favorite way is to consider
                  $$
                  f(x)=left(frac{1}{x^3}+frac{1}{x^2}right)^{1/3}-left(frac{1}{x^3}+1right)^{1/3}
                  =frac{sqrt[3]{1+x}-sqrt[3]{1+x^3}}{x}
                  $$

                  so that your sequence is $f(1/n)$ and so you can compute
                  $$
                  lim_{xto0^+}f(x)=lim_{xto0}frac{(1+x/3+o(x)-(1+x^3/3+o(x^3))}{x}=frac{1}{3}
                  $$

                  Without Taylor expansion, the sought limit is the derivative at $0$ of $g(x)=sqrt[3]{1+x}-sqrt[3]{1+x^3}$, so
                  $$
                  g'(x)=frac{1}{3sqrt[3]{(1+x)^2}}-frac{3x^2}{3sqrt[3]{(1+x^3)^2}}
                  $$

                  and $g'(0)=1/3$.






                  share|cite|improve this answer
























                    3












                    3








                    3






                    My favorite way is to consider
                    $$
                    f(x)=left(frac{1}{x^3}+frac{1}{x^2}right)^{1/3}-left(frac{1}{x^3}+1right)^{1/3}
                    =frac{sqrt[3]{1+x}-sqrt[3]{1+x^3}}{x}
                    $$

                    so that your sequence is $f(1/n)$ and so you can compute
                    $$
                    lim_{xto0^+}f(x)=lim_{xto0}frac{(1+x/3+o(x)-(1+x^3/3+o(x^3))}{x}=frac{1}{3}
                    $$

                    Without Taylor expansion, the sought limit is the derivative at $0$ of $g(x)=sqrt[3]{1+x}-sqrt[3]{1+x^3}$, so
                    $$
                    g'(x)=frac{1}{3sqrt[3]{(1+x)^2}}-frac{3x^2}{3sqrt[3]{(1+x^3)^2}}
                    $$

                    and $g'(0)=1/3$.






                    share|cite|improve this answer












                    My favorite way is to consider
                    $$
                    f(x)=left(frac{1}{x^3}+frac{1}{x^2}right)^{1/3}-left(frac{1}{x^3}+1right)^{1/3}
                    =frac{sqrt[3]{1+x}-sqrt[3]{1+x^3}}{x}
                    $$

                    so that your sequence is $f(1/n)$ and so you can compute
                    $$
                    lim_{xto0^+}f(x)=lim_{xto0}frac{(1+x/3+o(x)-(1+x^3/3+o(x^3))}{x}=frac{1}{3}
                    $$

                    Without Taylor expansion, the sought limit is the derivative at $0$ of $g(x)=sqrt[3]{1+x}-sqrt[3]{1+x^3}$, so
                    $$
                    g'(x)=frac{1}{3sqrt[3]{(1+x)^2}}-frac{3x^2}{3sqrt[3]{(1+x^3)^2}}
                    $$

                    and $g'(0)=1/3$.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Dec 22 at 10:01









                    egreg

                    177k1484200




                    177k1484200























                        0














                        1) $n(1+1/n )^{1/3} = $



                        $dfrac{(1+1/n)^{1/3}}{1/n}.$



                        2) $n(1+1/n^3 )^{1/3} =$



                        $dfrac{(1+1/n^3)^{1/3}}{1/n}.$



                        $small{dfrac{((1+1/n)^{1/3} -1) -((1+1/n^3)^{1/3}-1)}{1/n}}$



                        $small{=dfrac{(1+1/n)^{1/3} -1}{1/n} - (1/n^2)dfrac{(1+1/n^3)^{1/3} -1}{1/n^3}.}$



                        First term:



                        Let $f(x)=x^{1/3}$:



                        $lim_{n rightarrow infty}dfrac{(1+1/n)^{1/3} -1}{1/n}=$



                        $f'(x)_{x=1}= (1/3);$



                        Second term:



                        $small{-lim_{n rightarrow infty}(1/n^2)dfrac{(1+1/n^3)^{1/3}-1}{1/n^3}= }$



                        $small{lim_{n rightarrow infty}(1/n^2)×}$



                        $small{lim_{n rightarrow infty}dfrac{(1+1/n^3)^{1/3}-1}{1/n^3}=}$



                        $small{0 cdot (1/3)=0.}$






                        share|cite|improve this answer




























                          0














                          1) $n(1+1/n )^{1/3} = $



                          $dfrac{(1+1/n)^{1/3}}{1/n}.$



                          2) $n(1+1/n^3 )^{1/3} =$



                          $dfrac{(1+1/n^3)^{1/3}}{1/n}.$



                          $small{dfrac{((1+1/n)^{1/3} -1) -((1+1/n^3)^{1/3}-1)}{1/n}}$



                          $small{=dfrac{(1+1/n)^{1/3} -1}{1/n} - (1/n^2)dfrac{(1+1/n^3)^{1/3} -1}{1/n^3}.}$



                          First term:



                          Let $f(x)=x^{1/3}$:



                          $lim_{n rightarrow infty}dfrac{(1+1/n)^{1/3} -1}{1/n}=$



                          $f'(x)_{x=1}= (1/3);$



                          Second term:



                          $small{-lim_{n rightarrow infty}(1/n^2)dfrac{(1+1/n^3)^{1/3}-1}{1/n^3}= }$



                          $small{lim_{n rightarrow infty}(1/n^2)×}$



                          $small{lim_{n rightarrow infty}dfrac{(1+1/n^3)^{1/3}-1}{1/n^3}=}$



                          $small{0 cdot (1/3)=0.}$






                          share|cite|improve this answer


























                            0












                            0








                            0






                            1) $n(1+1/n )^{1/3} = $



                            $dfrac{(1+1/n)^{1/3}}{1/n}.$



                            2) $n(1+1/n^3 )^{1/3} =$



                            $dfrac{(1+1/n^3)^{1/3}}{1/n}.$



                            $small{dfrac{((1+1/n)^{1/3} -1) -((1+1/n^3)^{1/3}-1)}{1/n}}$



                            $small{=dfrac{(1+1/n)^{1/3} -1}{1/n} - (1/n^2)dfrac{(1+1/n^3)^{1/3} -1}{1/n^3}.}$



                            First term:



                            Let $f(x)=x^{1/3}$:



                            $lim_{n rightarrow infty}dfrac{(1+1/n)^{1/3} -1}{1/n}=$



                            $f'(x)_{x=1}= (1/3);$



                            Second term:



                            $small{-lim_{n rightarrow infty}(1/n^2)dfrac{(1+1/n^3)^{1/3}-1}{1/n^3}= }$



                            $small{lim_{n rightarrow infty}(1/n^2)×}$



                            $small{lim_{n rightarrow infty}dfrac{(1+1/n^3)^{1/3}-1}{1/n^3}=}$



                            $small{0 cdot (1/3)=0.}$






                            share|cite|improve this answer














                            1) $n(1+1/n )^{1/3} = $



                            $dfrac{(1+1/n)^{1/3}}{1/n}.$



                            2) $n(1+1/n^3 )^{1/3} =$



                            $dfrac{(1+1/n^3)^{1/3}}{1/n}.$



                            $small{dfrac{((1+1/n)^{1/3} -1) -((1+1/n^3)^{1/3}-1)}{1/n}}$



                            $small{=dfrac{(1+1/n)^{1/3} -1}{1/n} - (1/n^2)dfrac{(1+1/n^3)^{1/3} -1}{1/n^3}.}$



                            First term:



                            Let $f(x)=x^{1/3}$:



                            $lim_{n rightarrow infty}dfrac{(1+1/n)^{1/3} -1}{1/n}=$



                            $f'(x)_{x=1}= (1/3);$



                            Second term:



                            $small{-lim_{n rightarrow infty}(1/n^2)dfrac{(1+1/n^3)^{1/3}-1}{1/n^3}= }$



                            $small{lim_{n rightarrow infty}(1/n^2)×}$



                            $small{lim_{n rightarrow infty}dfrac{(1+1/n^3)^{1/3}-1}{1/n^3}=}$



                            $small{0 cdot (1/3)=0.}$







                            share|cite|improve this answer














                            share|cite|improve this answer



                            share|cite|improve this answer








                            edited Dec 22 at 10:56

























                            answered Dec 22 at 10:30









                            Peter Szilas

                            10.6k2720




                            10.6k2720






















                                Belkan is a new contributor. Be nice, and check out our Code of Conduct.










                                draft saved

                                draft discarded


















                                Belkan is a new contributor. Be nice, and check out our Code of Conduct.













                                Belkan is a new contributor. Be nice, and check out our Code of Conduct.












                                Belkan is a new contributor. Be nice, and check out our Code of Conduct.
















                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.





                                Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                                Please pay close attention to the following guidance:


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3049256%2ffind-the-limit-of-lim-n-to-inftyn3n21-3-n311-3-without-usi%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Сан-Квентин

                                8-я гвардейская общевойсковая армия

                                Алькесар