unordered_set: a hash table -based set data structure in C89












0












$begingroup$


In this post, I present a hash table -based set data structure written in C89:



unordered_set.h



#ifndef UNORDERED_SET_H
#define UNORDERED_SET_H

#include <stdlib.h>
#include <stdbool.h>

#ifdef __cplusplus
extern "C" {
#endif

typedef struct unordered_set {
struct unordered_set_state* state;
} unordered_set;

typedef struct unordered_set_iterator unordered_set_iterator;

/***************************************************************************
* Allocates a new, empty set with given hash function and given equality *
* testing function. *
***************************************************************************/
unordered_set* unordered_set_alloc(size_t initial_capacity,
float load_factor,
size_t(*p_hash_function)(void*),
int (*p_equals_function)(void*, void*));

/***************************************************************************
* Adds 'p_element' to the set if not already there. Returns true if the *
* structure of the set changed. *
***************************************************************************/
int unordered_set_add(unordered_set* p_set, void* p_element);

/***************************************************************************
* Returns true if the set contains the element. *
***************************************************************************/
int unordered_set_contains(unordered_set* p_set, void* p_element);

/***************************************************************************
* If the element is in the set, removes it and returns true. *
***************************************************************************/
int unordered_set_remove(unordered_set* p_set, void* p_element);

/***************************************************************************
* Removes all the contents of the set. *
***************************************************************************/
void unordered_set_clear(unordered_set* p_set);

/***************************************************************************
* Returns the size of the set. *
***************************************************************************/
size_t unordered_set_size(unordered_set* p_set);

/***************************************************************************
* Checks that the set is in valid state. *
***************************************************************************/
int unordered_set_is_healthy(unordered_set* p_set);

/***************************************************************************
* Deallocates the entire set. Only the set and its nodes are deallocated. *
* The user is responsible for deallocating the actual data stored in the *
* set. *
***************************************************************************/
void unordered_set_free(unordered_set* p_set);

/***************************************************************************
* Returns the iterator over the set. The nodes are iterated in insertion *
* order. *
***************************************************************************/
unordered_set_iterator* unordered_set_iterator_alloc(unordered_set* p_set);

/***************************************************************************
* Returns the number of elements not yet iterated over. *
***************************************************************************/
size_t unordered_set_iterator_has_next(unordered_set_iterator* p_iterator);

/***************************************************************************
* Loads the next element in the iteration order. Returns true if advanced *
* to the next element. *
***************************************************************************/
int unordered_set_iterator_next(unordered_set_iterator* p_iterator,
void** pp_element);

/***************************************************************************
* Returns true if the set was modified during the iteration. *
***************************************************************************/
int unordered_set_iterator_is_disturbed(unordered_set_iterator* p_iterator);

/***************************************************************************
* Deallocates the set iterator. *
***************************************************************************/
void unordered_set_iterator_free(unordered_set_iterator* p_iterator);

/* Contains the unit tests. */
void unordered_set_test();

#ifdef __cplusplus
}
#endif

#endif /* UNORDERED_SET_H */


unordered_set.c



#include "my_assert.h"
#include "unordered_set.h"
#include <stdint.h>
#include <stdlib.h>
#include <string.h>

#define FALSE 0
#define TRUE 1

typedef struct unordered_set_entry {
void* key;
struct unordered_set_entry* chain_next;
struct unordered_set_entry* prev;
struct unordered_set_entry* next;
} unordered_set_entry;

typedef struct unordered_set_state {
unordered_set_entry** table;
unordered_set_entry* head;
unordered_set_entry* tail;
size_t (*hash_function)(void*);
int (*equals_function) (void*, void*);
size_t mod_count;
size_t table_capacity;
size_t size;
size_t mask;
size_t max_allowed_size;
float load_factor;
} unordered_set_state;

struct unordered_set_iterator {
unordered_set* set;
unordered_set_entry* next_entry;
size_t iterated_count;
size_t expected_mod_count;
};

static unordered_set_entry* unordered_set_entry_alloc(void* key)
{
unordered_set_entry* entry = malloc(sizeof(*entry));

if (!entry)
{
return NULL;
}

entry->key = key;
entry->chain_next = NULL;
entry->next = NULL;
entry->prev = NULL;

return entry;
}

static const float MINIMUM_LOAD_FACTOR = 0.2f;
static const int MINIMUM_INITIAL_CAPACITY = 16;

static float maxf(float a, float b)
{
return a < b ? b : a;
}

static int maxi(int a, int b)
{
return a < b ? b : a;
}

/*******************************************************************************
* Makes sure that the load factor is no less than a minimum threshold. *
*******************************************************************************/
static float fix_load_factor(float load_factor)
{
return maxf(load_factor, MINIMUM_LOAD_FACTOR);
}

/*******************************************************************************
* Makes sure that the initial capacity is no less than a minimum allowed and *
* is a power of two. *
*******************************************************************************/
static size_t fix_initial_capacity(size_t initial_capacity)
{
size_t ret;

initial_capacity = maxi(initial_capacity, MINIMUM_INITIAL_CAPACITY);
ret = 1;

while (ret < initial_capacity)
{
ret <<= 1;
}

return ret;
}

unordered_set* unordered_set_alloc(size_t initial_capacity,
float load_factor,
size_t(*hash_function)(void*),
int (*equals_function)(void*, void*))
{
unordered_set* set;

if (!hash_function || !equals_function)
{
return NULL;
}

set = malloc(sizeof(*set));

if (!set)
{
return NULL;
}

set->state = malloc(sizeof(*set->state));
load_factor = fix_load_factor(load_factor);
initial_capacity = fix_initial_capacity(initial_capacity);

set->state->load_factor = load_factor;
set->state->table_capacity = initial_capacity;
set->state->size = 0;
set->state->mod_count = 0;
set->state->head = NULL;
set->state->tail = NULL;
set->state->table = calloc(initial_capacity,
sizeof(unordered_set_entry*));
set->state->hash_function = hash_function;
set->state->equals_function = equals_function;
set->state->mask = initial_capacity - 1;
set->state->max_allowed_size = (size_t)(initial_capacity * load_factor);

return set;
}

static void ensure_capacity(unordered_set* set)
{
size_t new_capacity;
size_t new_mask;
size_t index;
unordered_set_entry* entry;
unordered_set_entry** new_table;

if (set->state->size < set->state->max_allowed_size)
{
return;
}

new_capacity = 2 * set->state->table_capacity;
new_mask = new_capacity - 1;
new_table = calloc(new_capacity, sizeof(unordered_set_entry*));

if (!new_table)
{
return;
}

/* Rehash the entries. */
for (entry = set->state->head; entry; entry = entry->next)
{
index = set->state->hash_function(entry->key) & new_mask;
entry->chain_next = new_table[index];
new_table[index] = entry;
}

free(set->state->table);

set->state->table = new_table;
set->state->table_capacity = new_capacity;
set->state->mask = new_mask;
set->state->max_allowed_size = (size_t)(new_capacity * set->state->load_factor);
}

int unordered_set_add(unordered_set* set, void* key)
{
size_t index;
size_t hash_value;
unordered_set_entry* entry;

if (!set)
{
return FALSE;
}

hash_value = set->state->hash_function(key);
index = hash_value & set->state->mask;

for (entry = set->state->table[index]; entry; entry = entry->chain_next)
{
if (set->state->equals_function(entry->key, key))
{
return false;
}
}

ensure_capacity(set);

/* Recompute the index since it is possibly changed by 'ensure_capacity' */
index = hash_value & set->state->mask;
entry = unordered_set_entry_alloc(key);
entry->chain_next = set->state->table[index];
set->state->table[index] = entry;

/* Link the new entry to the tail of the list. */
if (!set->state->tail)
{
set->state->head = entry;
set->state->tail = entry;
}
else
{
set->state->tail->next = entry;
entry->prev = set->state->tail;
set->state->tail = entry;
}

set->state->size++;
set->state->mod_count++;

return true;
}

int unordered_set_contains(unordered_set* set, void* key)
{
size_t index;
unordered_set_entry* p_entry;

if (!set)
{
return false;
}

index = set->state->hash_function(key) & set->state->mask;

for (p_entry = set->state->table[index]; p_entry; p_entry = p_entry->chain_next)
{
if (set->state->equals_function(key, p_entry->key))
{
return true;
}
}

return false;
}

int unordered_set_remove(unordered_set* set, void* key)
{
size_t index;
unordered_set_entry* prev_entry;
unordered_set_entry* current_entry;

if (!set)
{
return false;
}

index = set->state->hash_function(key) & set->state->mask;

prev_entry = NULL;

for (current_entry = set->state->table[index];
current_entry;
current_entry = current_entry->chain_next)
{
if (set->state->equals_function(key, current_entry->key))
{
if (prev_entry)
{
/* Omit the 'p_current_entry' in the collision chain. */
prev_entry->chain_next = current_entry->chain_next;
}
else
{
set->state->table[index] = current_entry->chain_next;
}

/* Unlink from the global iteration chain. */
if (current_entry->prev)
{
current_entry->prev->next = current_entry->next;
}
else
{
set->state->head = current_entry->next;
}

if (current_entry->next)
{
current_entry->next->prev = current_entry->prev;
}
else
{
set->state->tail = current_entry->prev;
}

set->state->size--;
set->state->mod_count++;
free(current_entry);
return true;
}

prev_entry = current_entry;
}

return false;
}

void unordered_set_clear(unordered_set* set)
{
unordered_set_entry* entry;
unordered_set_entry* next_entry;
size_t index;

if (!set)
{
return;
}

entry = set->state->head;

while (entry)
{
index = set->state->hash_function(entry->key) & set->state->mask;
next_entry = entry->next;
free(entry);
entry = next_entry;
set->state->table[index] = NULL;
}

set->state->mod_count += set->state->size;
set->state->size = 0;
set->state->head = NULL;
set->state->tail = NULL;
}

size_t unordered_set_size(unordered_set* set)
{
return set ? set->state->size : 0;
}

int unordered_set_is_healthy(unordered_set* set)
{
size_t counter;
unordered_set_entry* entry;

if (!set)
{
return false;
}

counter = 0;
entry = set->state->head;

if (entry && entry->prev)
{
return false;
}

for (; entry; entry = entry->next)
{
counter++;
}

return counter == set->state->size;
}

void unordered_set_free(unordered_set* set)
{
if (!set)
{
return;
}

unordered_set_clear(set);
free(set->state->table);
free(set);
}

unordered_set_iterator*
unordered_set_iterator_alloc(unordered_set* set)
{
unordered_set_iterator* iterator;

if (!set)
{
return NULL;
}

iterator = malloc(sizeof(*iterator));

if (!iterator)
{
return NULL;
}

iterator->set = set;
iterator->iterated_count = 0;
iterator->next_entry = set->state->head;
iterator->expected_mod_count = set->state->mod_count;

return iterator;
}

size_t unordered_set_iterator_has_next(unordered_set_iterator* iterator)
{
if (!iterator)
{
return 0;
}

if (unordered_set_iterator_is_disturbed(iterator))
{
return 0;
}

return iterator->set->state->size - iterator->iterated_count;
}

int unordered_set_iterator_next(unordered_set_iterator* iterator,
void** key_pointer)
{
if (!iterator)
{
return false;
}

if (!iterator->next_entry)
{
return false;
}

if (unordered_set_iterator_is_disturbed(iterator))
{
return false;
}

*key_pointer = iterator->next_entry->key;
iterator->iterated_count++;
iterator->next_entry = iterator->next_entry->next;

return true;
}

int unordered_set_iterator_is_disturbed(unordered_set_iterator* iterator)
{
if (!iterator)
{
false;
}

return iterator->expected_mod_count != iterator->set->state->mod_count;
}

void unordered_set_iterator_free(unordered_set_iterator* iterator)
{
if (!iterator)
{
return;
}

iterator->set = NULL;
iterator->next_entry = NULL;
free(iterator);
}

static int int_equals(void* a, void* b)
{
int ia = (int)(intptr_t) a;
int ib = (int)(intptr_t) b;
return ia == ib;
}

static size_t int_hash_function(void* i)
{
return (size_t) i;
}

static int str_equals(void* a, void* b)
{
char* ca = (char*) a;
char* cb = (char*) b;
return strcmp(ca, cb) == 0;
}

static size_t str_hash_function(void* p)
{
size_t sum;
char* str;
int i;

sum = 0;
str = (char*) p;
i = 1;

while (*str)
{
sum += *str * i;
str++;
}

return sum;
}

static void unordered_set_test_add()
{
unordered_set* set = unordered_set_alloc(1,
0.5f,
int_hash_function,
int_equals);
int i;

puts(" unordered_set_test_add()");

for (i = 10; i < 20; i++)
{
ASSERT(unordered_set_contains(set, (void*)(intptr_t) i) == FALSE); /*!*/
ASSERT(unordered_set_add(set, (void*)(intptr_t) i));
ASSERT(unordered_set_contains(set, (void*)(intptr_t) i));
ASSERT(unordered_set_is_healthy(set));
}

ASSERT(!unordered_set_contains(set, (void*) 9));
ASSERT( unordered_set_contains(set, (void*) 10));
ASSERT( unordered_set_contains(set, (void*) 19));
ASSERT(!unordered_set_contains(set, (void*) 20));

unordered_set_free(set);

set = unordered_set_alloc(1,
0.45,
str_hash_function,
str_equals);

ASSERT(!unordered_set_contains(set, "hello"));
ASSERT(!unordered_set_contains(set, "world"));
ASSERT(unordered_set_add(set, "world"));
ASSERT(unordered_set_add(set, "hello"));
ASSERT(unordered_set_contains(set, "hello"));
ASSERT(unordered_set_contains(set, "world"));
ASSERT(!unordered_set_contains(set, "bye"));

ASSERT(unordered_set_is_healthy(set));

ASSERT(unordered_set_remove(set, "hello"));
ASSERT(!unordered_set_contains(set, "hello"));

ASSERT(unordered_set_add(set, "repeat"));
ASSERT(!unordered_set_add(set, "repeat"));
}

static void unordered_set_test_contains()
{
unordered_set* set = unordered_set_alloc(3,
0.7f,
int_hash_function,
int_equals);
int i;

puts(" unordered_set_test_contains()");

for (i = 0; i < 100; i++)
{
ASSERT(unordered_set_add(set, (void*)(intptr_t) i));
}

for (i = 99; i >= 0; i--)
{
ASSERT(unordered_set_contains(set, (void*)(intptr_t) i));
}

for (i = 50; i < 100; i++)
{
ASSERT(unordered_set_remove(set, (void*)(intptr_t) i));
ASSERT(!unordered_set_contains(set, (void*)(intptr_t) i));
}

unordered_set_free(set);
}

static void unordered_set_test_remove()
{
unordered_set* set = unordered_set_alloc(3,
0.7f,
int_hash_function,
int_equals);

puts("unordered_set_test_remove()");

ASSERT(unordered_set_add(set, (void*) 1));
ASSERT(unordered_set_add(set, (void*) 2));
ASSERT(unordered_set_add(set, (void*) 3));
ASSERT(3 == unordered_set_size(set));
ASSERT(!unordered_set_add(set, (void*) 2));
ASSERT(3 == unordered_set_size(set));

ASSERT(unordered_set_remove(set, (void*) 2));
ASSERT(!unordered_set_contains(set, (void*) 2));

unordered_set_free(set);
}

static void unordered_set_test_clear()
{
unordered_set* set = unordered_set_alloc(3,
0.7f,
int_hash_function,
int_equals);

int i;

puts("unordered_set_test_clear()");

for (i = 0; i < 100; i++)
{
ASSERT((int) unordered_set_size(set) == i);
unordered_set_add(set, (void*)(intptr_t) i);
}

unordered_set_clear(set);

ASSERT(unordered_set_size(set) == 0);

for (i = -100; i < 200; i++)
{
ASSERT(!unordered_set_contains(set, (void*)(intptr_t) i));
}

unordered_set_free(set);
}

static void unordered_set_test_iterator()
{
unordered_set* set = unordered_set_alloc(
5,
0.6f,
int_hash_function,
int_equals);

unordered_set_iterator* iterator;
int i = 0;
void* p;

puts(" unordered_set_test_iterator()");

for (i = 0; i < 100; i++)
{
unordered_set_add(set, (void*)(intptr_t) i);
}

iterator = unordered_set_iterator_alloc(set);

for (i = 0; i < 100; i++)
{
ASSERT(unordered_set_iterator_has_next(iterator));
ASSERT(unordered_set_contains(set, (void*)(intptr_t) i));
ASSERT(unordered_set_iterator_next(iterator, &p));
ASSERT(i == (intptr_t) p);
}

ASSERT(unordered_set_iterator_has_next(iterator) == FALSE);
}

void unordered_set_test()
{
puts(" unordered_set_test()");

unordered_set_test_add();
unordered_set_test_contains();
unordered_set_test_remove();
unordered_set_test_clear();
unordered_set_test_iterator();
}


This software belongs to this repository).










share|improve this question









$endgroup$

















    0












    $begingroup$


    In this post, I present a hash table -based set data structure written in C89:



    unordered_set.h



    #ifndef UNORDERED_SET_H
    #define UNORDERED_SET_H

    #include <stdlib.h>
    #include <stdbool.h>

    #ifdef __cplusplus
    extern "C" {
    #endif

    typedef struct unordered_set {
    struct unordered_set_state* state;
    } unordered_set;

    typedef struct unordered_set_iterator unordered_set_iterator;

    /***************************************************************************
    * Allocates a new, empty set with given hash function and given equality *
    * testing function. *
    ***************************************************************************/
    unordered_set* unordered_set_alloc(size_t initial_capacity,
    float load_factor,
    size_t(*p_hash_function)(void*),
    int (*p_equals_function)(void*, void*));

    /***************************************************************************
    * Adds 'p_element' to the set if not already there. Returns true if the *
    * structure of the set changed. *
    ***************************************************************************/
    int unordered_set_add(unordered_set* p_set, void* p_element);

    /***************************************************************************
    * Returns true if the set contains the element. *
    ***************************************************************************/
    int unordered_set_contains(unordered_set* p_set, void* p_element);

    /***************************************************************************
    * If the element is in the set, removes it and returns true. *
    ***************************************************************************/
    int unordered_set_remove(unordered_set* p_set, void* p_element);

    /***************************************************************************
    * Removes all the contents of the set. *
    ***************************************************************************/
    void unordered_set_clear(unordered_set* p_set);

    /***************************************************************************
    * Returns the size of the set. *
    ***************************************************************************/
    size_t unordered_set_size(unordered_set* p_set);

    /***************************************************************************
    * Checks that the set is in valid state. *
    ***************************************************************************/
    int unordered_set_is_healthy(unordered_set* p_set);

    /***************************************************************************
    * Deallocates the entire set. Only the set and its nodes are deallocated. *
    * The user is responsible for deallocating the actual data stored in the *
    * set. *
    ***************************************************************************/
    void unordered_set_free(unordered_set* p_set);

    /***************************************************************************
    * Returns the iterator over the set. The nodes are iterated in insertion *
    * order. *
    ***************************************************************************/
    unordered_set_iterator* unordered_set_iterator_alloc(unordered_set* p_set);

    /***************************************************************************
    * Returns the number of elements not yet iterated over. *
    ***************************************************************************/
    size_t unordered_set_iterator_has_next(unordered_set_iterator* p_iterator);

    /***************************************************************************
    * Loads the next element in the iteration order. Returns true if advanced *
    * to the next element. *
    ***************************************************************************/
    int unordered_set_iterator_next(unordered_set_iterator* p_iterator,
    void** pp_element);

    /***************************************************************************
    * Returns true if the set was modified during the iteration. *
    ***************************************************************************/
    int unordered_set_iterator_is_disturbed(unordered_set_iterator* p_iterator);

    /***************************************************************************
    * Deallocates the set iterator. *
    ***************************************************************************/
    void unordered_set_iterator_free(unordered_set_iterator* p_iterator);

    /* Contains the unit tests. */
    void unordered_set_test();

    #ifdef __cplusplus
    }
    #endif

    #endif /* UNORDERED_SET_H */


    unordered_set.c



    #include "my_assert.h"
    #include "unordered_set.h"
    #include <stdint.h>
    #include <stdlib.h>
    #include <string.h>

    #define FALSE 0
    #define TRUE 1

    typedef struct unordered_set_entry {
    void* key;
    struct unordered_set_entry* chain_next;
    struct unordered_set_entry* prev;
    struct unordered_set_entry* next;
    } unordered_set_entry;

    typedef struct unordered_set_state {
    unordered_set_entry** table;
    unordered_set_entry* head;
    unordered_set_entry* tail;
    size_t (*hash_function)(void*);
    int (*equals_function) (void*, void*);
    size_t mod_count;
    size_t table_capacity;
    size_t size;
    size_t mask;
    size_t max_allowed_size;
    float load_factor;
    } unordered_set_state;

    struct unordered_set_iterator {
    unordered_set* set;
    unordered_set_entry* next_entry;
    size_t iterated_count;
    size_t expected_mod_count;
    };

    static unordered_set_entry* unordered_set_entry_alloc(void* key)
    {
    unordered_set_entry* entry = malloc(sizeof(*entry));

    if (!entry)
    {
    return NULL;
    }

    entry->key = key;
    entry->chain_next = NULL;
    entry->next = NULL;
    entry->prev = NULL;

    return entry;
    }

    static const float MINIMUM_LOAD_FACTOR = 0.2f;
    static const int MINIMUM_INITIAL_CAPACITY = 16;

    static float maxf(float a, float b)
    {
    return a < b ? b : a;
    }

    static int maxi(int a, int b)
    {
    return a < b ? b : a;
    }

    /*******************************************************************************
    * Makes sure that the load factor is no less than a minimum threshold. *
    *******************************************************************************/
    static float fix_load_factor(float load_factor)
    {
    return maxf(load_factor, MINIMUM_LOAD_FACTOR);
    }

    /*******************************************************************************
    * Makes sure that the initial capacity is no less than a minimum allowed and *
    * is a power of two. *
    *******************************************************************************/
    static size_t fix_initial_capacity(size_t initial_capacity)
    {
    size_t ret;

    initial_capacity = maxi(initial_capacity, MINIMUM_INITIAL_CAPACITY);
    ret = 1;

    while (ret < initial_capacity)
    {
    ret <<= 1;
    }

    return ret;
    }

    unordered_set* unordered_set_alloc(size_t initial_capacity,
    float load_factor,
    size_t(*hash_function)(void*),
    int (*equals_function)(void*, void*))
    {
    unordered_set* set;

    if (!hash_function || !equals_function)
    {
    return NULL;
    }

    set = malloc(sizeof(*set));

    if (!set)
    {
    return NULL;
    }

    set->state = malloc(sizeof(*set->state));
    load_factor = fix_load_factor(load_factor);
    initial_capacity = fix_initial_capacity(initial_capacity);

    set->state->load_factor = load_factor;
    set->state->table_capacity = initial_capacity;
    set->state->size = 0;
    set->state->mod_count = 0;
    set->state->head = NULL;
    set->state->tail = NULL;
    set->state->table = calloc(initial_capacity,
    sizeof(unordered_set_entry*));
    set->state->hash_function = hash_function;
    set->state->equals_function = equals_function;
    set->state->mask = initial_capacity - 1;
    set->state->max_allowed_size = (size_t)(initial_capacity * load_factor);

    return set;
    }

    static void ensure_capacity(unordered_set* set)
    {
    size_t new_capacity;
    size_t new_mask;
    size_t index;
    unordered_set_entry* entry;
    unordered_set_entry** new_table;

    if (set->state->size < set->state->max_allowed_size)
    {
    return;
    }

    new_capacity = 2 * set->state->table_capacity;
    new_mask = new_capacity - 1;
    new_table = calloc(new_capacity, sizeof(unordered_set_entry*));

    if (!new_table)
    {
    return;
    }

    /* Rehash the entries. */
    for (entry = set->state->head; entry; entry = entry->next)
    {
    index = set->state->hash_function(entry->key) & new_mask;
    entry->chain_next = new_table[index];
    new_table[index] = entry;
    }

    free(set->state->table);

    set->state->table = new_table;
    set->state->table_capacity = new_capacity;
    set->state->mask = new_mask;
    set->state->max_allowed_size = (size_t)(new_capacity * set->state->load_factor);
    }

    int unordered_set_add(unordered_set* set, void* key)
    {
    size_t index;
    size_t hash_value;
    unordered_set_entry* entry;

    if (!set)
    {
    return FALSE;
    }

    hash_value = set->state->hash_function(key);
    index = hash_value & set->state->mask;

    for (entry = set->state->table[index]; entry; entry = entry->chain_next)
    {
    if (set->state->equals_function(entry->key, key))
    {
    return false;
    }
    }

    ensure_capacity(set);

    /* Recompute the index since it is possibly changed by 'ensure_capacity' */
    index = hash_value & set->state->mask;
    entry = unordered_set_entry_alloc(key);
    entry->chain_next = set->state->table[index];
    set->state->table[index] = entry;

    /* Link the new entry to the tail of the list. */
    if (!set->state->tail)
    {
    set->state->head = entry;
    set->state->tail = entry;
    }
    else
    {
    set->state->tail->next = entry;
    entry->prev = set->state->tail;
    set->state->tail = entry;
    }

    set->state->size++;
    set->state->mod_count++;

    return true;
    }

    int unordered_set_contains(unordered_set* set, void* key)
    {
    size_t index;
    unordered_set_entry* p_entry;

    if (!set)
    {
    return false;
    }

    index = set->state->hash_function(key) & set->state->mask;

    for (p_entry = set->state->table[index]; p_entry; p_entry = p_entry->chain_next)
    {
    if (set->state->equals_function(key, p_entry->key))
    {
    return true;
    }
    }

    return false;
    }

    int unordered_set_remove(unordered_set* set, void* key)
    {
    size_t index;
    unordered_set_entry* prev_entry;
    unordered_set_entry* current_entry;

    if (!set)
    {
    return false;
    }

    index = set->state->hash_function(key) & set->state->mask;

    prev_entry = NULL;

    for (current_entry = set->state->table[index];
    current_entry;
    current_entry = current_entry->chain_next)
    {
    if (set->state->equals_function(key, current_entry->key))
    {
    if (prev_entry)
    {
    /* Omit the 'p_current_entry' in the collision chain. */
    prev_entry->chain_next = current_entry->chain_next;
    }
    else
    {
    set->state->table[index] = current_entry->chain_next;
    }

    /* Unlink from the global iteration chain. */
    if (current_entry->prev)
    {
    current_entry->prev->next = current_entry->next;
    }
    else
    {
    set->state->head = current_entry->next;
    }

    if (current_entry->next)
    {
    current_entry->next->prev = current_entry->prev;
    }
    else
    {
    set->state->tail = current_entry->prev;
    }

    set->state->size--;
    set->state->mod_count++;
    free(current_entry);
    return true;
    }

    prev_entry = current_entry;
    }

    return false;
    }

    void unordered_set_clear(unordered_set* set)
    {
    unordered_set_entry* entry;
    unordered_set_entry* next_entry;
    size_t index;

    if (!set)
    {
    return;
    }

    entry = set->state->head;

    while (entry)
    {
    index = set->state->hash_function(entry->key) & set->state->mask;
    next_entry = entry->next;
    free(entry);
    entry = next_entry;
    set->state->table[index] = NULL;
    }

    set->state->mod_count += set->state->size;
    set->state->size = 0;
    set->state->head = NULL;
    set->state->tail = NULL;
    }

    size_t unordered_set_size(unordered_set* set)
    {
    return set ? set->state->size : 0;
    }

    int unordered_set_is_healthy(unordered_set* set)
    {
    size_t counter;
    unordered_set_entry* entry;

    if (!set)
    {
    return false;
    }

    counter = 0;
    entry = set->state->head;

    if (entry && entry->prev)
    {
    return false;
    }

    for (; entry; entry = entry->next)
    {
    counter++;
    }

    return counter == set->state->size;
    }

    void unordered_set_free(unordered_set* set)
    {
    if (!set)
    {
    return;
    }

    unordered_set_clear(set);
    free(set->state->table);
    free(set);
    }

    unordered_set_iterator*
    unordered_set_iterator_alloc(unordered_set* set)
    {
    unordered_set_iterator* iterator;

    if (!set)
    {
    return NULL;
    }

    iterator = malloc(sizeof(*iterator));

    if (!iterator)
    {
    return NULL;
    }

    iterator->set = set;
    iterator->iterated_count = 0;
    iterator->next_entry = set->state->head;
    iterator->expected_mod_count = set->state->mod_count;

    return iterator;
    }

    size_t unordered_set_iterator_has_next(unordered_set_iterator* iterator)
    {
    if (!iterator)
    {
    return 0;
    }

    if (unordered_set_iterator_is_disturbed(iterator))
    {
    return 0;
    }

    return iterator->set->state->size - iterator->iterated_count;
    }

    int unordered_set_iterator_next(unordered_set_iterator* iterator,
    void** key_pointer)
    {
    if (!iterator)
    {
    return false;
    }

    if (!iterator->next_entry)
    {
    return false;
    }

    if (unordered_set_iterator_is_disturbed(iterator))
    {
    return false;
    }

    *key_pointer = iterator->next_entry->key;
    iterator->iterated_count++;
    iterator->next_entry = iterator->next_entry->next;

    return true;
    }

    int unordered_set_iterator_is_disturbed(unordered_set_iterator* iterator)
    {
    if (!iterator)
    {
    false;
    }

    return iterator->expected_mod_count != iterator->set->state->mod_count;
    }

    void unordered_set_iterator_free(unordered_set_iterator* iterator)
    {
    if (!iterator)
    {
    return;
    }

    iterator->set = NULL;
    iterator->next_entry = NULL;
    free(iterator);
    }

    static int int_equals(void* a, void* b)
    {
    int ia = (int)(intptr_t) a;
    int ib = (int)(intptr_t) b;
    return ia == ib;
    }

    static size_t int_hash_function(void* i)
    {
    return (size_t) i;
    }

    static int str_equals(void* a, void* b)
    {
    char* ca = (char*) a;
    char* cb = (char*) b;
    return strcmp(ca, cb) == 0;
    }

    static size_t str_hash_function(void* p)
    {
    size_t sum;
    char* str;
    int i;

    sum = 0;
    str = (char*) p;
    i = 1;

    while (*str)
    {
    sum += *str * i;
    str++;
    }

    return sum;
    }

    static void unordered_set_test_add()
    {
    unordered_set* set = unordered_set_alloc(1,
    0.5f,
    int_hash_function,
    int_equals);
    int i;

    puts(" unordered_set_test_add()");

    for (i = 10; i < 20; i++)
    {
    ASSERT(unordered_set_contains(set, (void*)(intptr_t) i) == FALSE); /*!*/
    ASSERT(unordered_set_add(set, (void*)(intptr_t) i));
    ASSERT(unordered_set_contains(set, (void*)(intptr_t) i));
    ASSERT(unordered_set_is_healthy(set));
    }

    ASSERT(!unordered_set_contains(set, (void*) 9));
    ASSERT( unordered_set_contains(set, (void*) 10));
    ASSERT( unordered_set_contains(set, (void*) 19));
    ASSERT(!unordered_set_contains(set, (void*) 20));

    unordered_set_free(set);

    set = unordered_set_alloc(1,
    0.45,
    str_hash_function,
    str_equals);

    ASSERT(!unordered_set_contains(set, "hello"));
    ASSERT(!unordered_set_contains(set, "world"));
    ASSERT(unordered_set_add(set, "world"));
    ASSERT(unordered_set_add(set, "hello"));
    ASSERT(unordered_set_contains(set, "hello"));
    ASSERT(unordered_set_contains(set, "world"));
    ASSERT(!unordered_set_contains(set, "bye"));

    ASSERT(unordered_set_is_healthy(set));

    ASSERT(unordered_set_remove(set, "hello"));
    ASSERT(!unordered_set_contains(set, "hello"));

    ASSERT(unordered_set_add(set, "repeat"));
    ASSERT(!unordered_set_add(set, "repeat"));
    }

    static void unordered_set_test_contains()
    {
    unordered_set* set = unordered_set_alloc(3,
    0.7f,
    int_hash_function,
    int_equals);
    int i;

    puts(" unordered_set_test_contains()");

    for (i = 0; i < 100; i++)
    {
    ASSERT(unordered_set_add(set, (void*)(intptr_t) i));
    }

    for (i = 99; i >= 0; i--)
    {
    ASSERT(unordered_set_contains(set, (void*)(intptr_t) i));
    }

    for (i = 50; i < 100; i++)
    {
    ASSERT(unordered_set_remove(set, (void*)(intptr_t) i));
    ASSERT(!unordered_set_contains(set, (void*)(intptr_t) i));
    }

    unordered_set_free(set);
    }

    static void unordered_set_test_remove()
    {
    unordered_set* set = unordered_set_alloc(3,
    0.7f,
    int_hash_function,
    int_equals);

    puts("unordered_set_test_remove()");

    ASSERT(unordered_set_add(set, (void*) 1));
    ASSERT(unordered_set_add(set, (void*) 2));
    ASSERT(unordered_set_add(set, (void*) 3));
    ASSERT(3 == unordered_set_size(set));
    ASSERT(!unordered_set_add(set, (void*) 2));
    ASSERT(3 == unordered_set_size(set));

    ASSERT(unordered_set_remove(set, (void*) 2));
    ASSERT(!unordered_set_contains(set, (void*) 2));

    unordered_set_free(set);
    }

    static void unordered_set_test_clear()
    {
    unordered_set* set = unordered_set_alloc(3,
    0.7f,
    int_hash_function,
    int_equals);

    int i;

    puts("unordered_set_test_clear()");

    for (i = 0; i < 100; i++)
    {
    ASSERT((int) unordered_set_size(set) == i);
    unordered_set_add(set, (void*)(intptr_t) i);
    }

    unordered_set_clear(set);

    ASSERT(unordered_set_size(set) == 0);

    for (i = -100; i < 200; i++)
    {
    ASSERT(!unordered_set_contains(set, (void*)(intptr_t) i));
    }

    unordered_set_free(set);
    }

    static void unordered_set_test_iterator()
    {
    unordered_set* set = unordered_set_alloc(
    5,
    0.6f,
    int_hash_function,
    int_equals);

    unordered_set_iterator* iterator;
    int i = 0;
    void* p;

    puts(" unordered_set_test_iterator()");

    for (i = 0; i < 100; i++)
    {
    unordered_set_add(set, (void*)(intptr_t) i);
    }

    iterator = unordered_set_iterator_alloc(set);

    for (i = 0; i < 100; i++)
    {
    ASSERT(unordered_set_iterator_has_next(iterator));
    ASSERT(unordered_set_contains(set, (void*)(intptr_t) i));
    ASSERT(unordered_set_iterator_next(iterator, &p));
    ASSERT(i == (intptr_t) p);
    }

    ASSERT(unordered_set_iterator_has_next(iterator) == FALSE);
    }

    void unordered_set_test()
    {
    puts(" unordered_set_test()");

    unordered_set_test_add();
    unordered_set_test_contains();
    unordered_set_test_remove();
    unordered_set_test_clear();
    unordered_set_test_iterator();
    }


    This software belongs to this repository).










    share|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      In this post, I present a hash table -based set data structure written in C89:



      unordered_set.h



      #ifndef UNORDERED_SET_H
      #define UNORDERED_SET_H

      #include <stdlib.h>
      #include <stdbool.h>

      #ifdef __cplusplus
      extern "C" {
      #endif

      typedef struct unordered_set {
      struct unordered_set_state* state;
      } unordered_set;

      typedef struct unordered_set_iterator unordered_set_iterator;

      /***************************************************************************
      * Allocates a new, empty set with given hash function and given equality *
      * testing function. *
      ***************************************************************************/
      unordered_set* unordered_set_alloc(size_t initial_capacity,
      float load_factor,
      size_t(*p_hash_function)(void*),
      int (*p_equals_function)(void*, void*));

      /***************************************************************************
      * Adds 'p_element' to the set if not already there. Returns true if the *
      * structure of the set changed. *
      ***************************************************************************/
      int unordered_set_add(unordered_set* p_set, void* p_element);

      /***************************************************************************
      * Returns true if the set contains the element. *
      ***************************************************************************/
      int unordered_set_contains(unordered_set* p_set, void* p_element);

      /***************************************************************************
      * If the element is in the set, removes it and returns true. *
      ***************************************************************************/
      int unordered_set_remove(unordered_set* p_set, void* p_element);

      /***************************************************************************
      * Removes all the contents of the set. *
      ***************************************************************************/
      void unordered_set_clear(unordered_set* p_set);

      /***************************************************************************
      * Returns the size of the set. *
      ***************************************************************************/
      size_t unordered_set_size(unordered_set* p_set);

      /***************************************************************************
      * Checks that the set is in valid state. *
      ***************************************************************************/
      int unordered_set_is_healthy(unordered_set* p_set);

      /***************************************************************************
      * Deallocates the entire set. Only the set and its nodes are deallocated. *
      * The user is responsible for deallocating the actual data stored in the *
      * set. *
      ***************************************************************************/
      void unordered_set_free(unordered_set* p_set);

      /***************************************************************************
      * Returns the iterator over the set. The nodes are iterated in insertion *
      * order. *
      ***************************************************************************/
      unordered_set_iterator* unordered_set_iterator_alloc(unordered_set* p_set);

      /***************************************************************************
      * Returns the number of elements not yet iterated over. *
      ***************************************************************************/
      size_t unordered_set_iterator_has_next(unordered_set_iterator* p_iterator);

      /***************************************************************************
      * Loads the next element in the iteration order. Returns true if advanced *
      * to the next element. *
      ***************************************************************************/
      int unordered_set_iterator_next(unordered_set_iterator* p_iterator,
      void** pp_element);

      /***************************************************************************
      * Returns true if the set was modified during the iteration. *
      ***************************************************************************/
      int unordered_set_iterator_is_disturbed(unordered_set_iterator* p_iterator);

      /***************************************************************************
      * Deallocates the set iterator. *
      ***************************************************************************/
      void unordered_set_iterator_free(unordered_set_iterator* p_iterator);

      /* Contains the unit tests. */
      void unordered_set_test();

      #ifdef __cplusplus
      }
      #endif

      #endif /* UNORDERED_SET_H */


      unordered_set.c



      #include "my_assert.h"
      #include "unordered_set.h"
      #include <stdint.h>
      #include <stdlib.h>
      #include <string.h>

      #define FALSE 0
      #define TRUE 1

      typedef struct unordered_set_entry {
      void* key;
      struct unordered_set_entry* chain_next;
      struct unordered_set_entry* prev;
      struct unordered_set_entry* next;
      } unordered_set_entry;

      typedef struct unordered_set_state {
      unordered_set_entry** table;
      unordered_set_entry* head;
      unordered_set_entry* tail;
      size_t (*hash_function)(void*);
      int (*equals_function) (void*, void*);
      size_t mod_count;
      size_t table_capacity;
      size_t size;
      size_t mask;
      size_t max_allowed_size;
      float load_factor;
      } unordered_set_state;

      struct unordered_set_iterator {
      unordered_set* set;
      unordered_set_entry* next_entry;
      size_t iterated_count;
      size_t expected_mod_count;
      };

      static unordered_set_entry* unordered_set_entry_alloc(void* key)
      {
      unordered_set_entry* entry = malloc(sizeof(*entry));

      if (!entry)
      {
      return NULL;
      }

      entry->key = key;
      entry->chain_next = NULL;
      entry->next = NULL;
      entry->prev = NULL;

      return entry;
      }

      static const float MINIMUM_LOAD_FACTOR = 0.2f;
      static const int MINIMUM_INITIAL_CAPACITY = 16;

      static float maxf(float a, float b)
      {
      return a < b ? b : a;
      }

      static int maxi(int a, int b)
      {
      return a < b ? b : a;
      }

      /*******************************************************************************
      * Makes sure that the load factor is no less than a minimum threshold. *
      *******************************************************************************/
      static float fix_load_factor(float load_factor)
      {
      return maxf(load_factor, MINIMUM_LOAD_FACTOR);
      }

      /*******************************************************************************
      * Makes sure that the initial capacity is no less than a minimum allowed and *
      * is a power of two. *
      *******************************************************************************/
      static size_t fix_initial_capacity(size_t initial_capacity)
      {
      size_t ret;

      initial_capacity = maxi(initial_capacity, MINIMUM_INITIAL_CAPACITY);
      ret = 1;

      while (ret < initial_capacity)
      {
      ret <<= 1;
      }

      return ret;
      }

      unordered_set* unordered_set_alloc(size_t initial_capacity,
      float load_factor,
      size_t(*hash_function)(void*),
      int (*equals_function)(void*, void*))
      {
      unordered_set* set;

      if (!hash_function || !equals_function)
      {
      return NULL;
      }

      set = malloc(sizeof(*set));

      if (!set)
      {
      return NULL;
      }

      set->state = malloc(sizeof(*set->state));
      load_factor = fix_load_factor(load_factor);
      initial_capacity = fix_initial_capacity(initial_capacity);

      set->state->load_factor = load_factor;
      set->state->table_capacity = initial_capacity;
      set->state->size = 0;
      set->state->mod_count = 0;
      set->state->head = NULL;
      set->state->tail = NULL;
      set->state->table = calloc(initial_capacity,
      sizeof(unordered_set_entry*));
      set->state->hash_function = hash_function;
      set->state->equals_function = equals_function;
      set->state->mask = initial_capacity - 1;
      set->state->max_allowed_size = (size_t)(initial_capacity * load_factor);

      return set;
      }

      static void ensure_capacity(unordered_set* set)
      {
      size_t new_capacity;
      size_t new_mask;
      size_t index;
      unordered_set_entry* entry;
      unordered_set_entry** new_table;

      if (set->state->size < set->state->max_allowed_size)
      {
      return;
      }

      new_capacity = 2 * set->state->table_capacity;
      new_mask = new_capacity - 1;
      new_table = calloc(new_capacity, sizeof(unordered_set_entry*));

      if (!new_table)
      {
      return;
      }

      /* Rehash the entries. */
      for (entry = set->state->head; entry; entry = entry->next)
      {
      index = set->state->hash_function(entry->key) & new_mask;
      entry->chain_next = new_table[index];
      new_table[index] = entry;
      }

      free(set->state->table);

      set->state->table = new_table;
      set->state->table_capacity = new_capacity;
      set->state->mask = new_mask;
      set->state->max_allowed_size = (size_t)(new_capacity * set->state->load_factor);
      }

      int unordered_set_add(unordered_set* set, void* key)
      {
      size_t index;
      size_t hash_value;
      unordered_set_entry* entry;

      if (!set)
      {
      return FALSE;
      }

      hash_value = set->state->hash_function(key);
      index = hash_value & set->state->mask;

      for (entry = set->state->table[index]; entry; entry = entry->chain_next)
      {
      if (set->state->equals_function(entry->key, key))
      {
      return false;
      }
      }

      ensure_capacity(set);

      /* Recompute the index since it is possibly changed by 'ensure_capacity' */
      index = hash_value & set->state->mask;
      entry = unordered_set_entry_alloc(key);
      entry->chain_next = set->state->table[index];
      set->state->table[index] = entry;

      /* Link the new entry to the tail of the list. */
      if (!set->state->tail)
      {
      set->state->head = entry;
      set->state->tail = entry;
      }
      else
      {
      set->state->tail->next = entry;
      entry->prev = set->state->tail;
      set->state->tail = entry;
      }

      set->state->size++;
      set->state->mod_count++;

      return true;
      }

      int unordered_set_contains(unordered_set* set, void* key)
      {
      size_t index;
      unordered_set_entry* p_entry;

      if (!set)
      {
      return false;
      }

      index = set->state->hash_function(key) & set->state->mask;

      for (p_entry = set->state->table[index]; p_entry; p_entry = p_entry->chain_next)
      {
      if (set->state->equals_function(key, p_entry->key))
      {
      return true;
      }
      }

      return false;
      }

      int unordered_set_remove(unordered_set* set, void* key)
      {
      size_t index;
      unordered_set_entry* prev_entry;
      unordered_set_entry* current_entry;

      if (!set)
      {
      return false;
      }

      index = set->state->hash_function(key) & set->state->mask;

      prev_entry = NULL;

      for (current_entry = set->state->table[index];
      current_entry;
      current_entry = current_entry->chain_next)
      {
      if (set->state->equals_function(key, current_entry->key))
      {
      if (prev_entry)
      {
      /* Omit the 'p_current_entry' in the collision chain. */
      prev_entry->chain_next = current_entry->chain_next;
      }
      else
      {
      set->state->table[index] = current_entry->chain_next;
      }

      /* Unlink from the global iteration chain. */
      if (current_entry->prev)
      {
      current_entry->prev->next = current_entry->next;
      }
      else
      {
      set->state->head = current_entry->next;
      }

      if (current_entry->next)
      {
      current_entry->next->prev = current_entry->prev;
      }
      else
      {
      set->state->tail = current_entry->prev;
      }

      set->state->size--;
      set->state->mod_count++;
      free(current_entry);
      return true;
      }

      prev_entry = current_entry;
      }

      return false;
      }

      void unordered_set_clear(unordered_set* set)
      {
      unordered_set_entry* entry;
      unordered_set_entry* next_entry;
      size_t index;

      if (!set)
      {
      return;
      }

      entry = set->state->head;

      while (entry)
      {
      index = set->state->hash_function(entry->key) & set->state->mask;
      next_entry = entry->next;
      free(entry);
      entry = next_entry;
      set->state->table[index] = NULL;
      }

      set->state->mod_count += set->state->size;
      set->state->size = 0;
      set->state->head = NULL;
      set->state->tail = NULL;
      }

      size_t unordered_set_size(unordered_set* set)
      {
      return set ? set->state->size : 0;
      }

      int unordered_set_is_healthy(unordered_set* set)
      {
      size_t counter;
      unordered_set_entry* entry;

      if (!set)
      {
      return false;
      }

      counter = 0;
      entry = set->state->head;

      if (entry && entry->prev)
      {
      return false;
      }

      for (; entry; entry = entry->next)
      {
      counter++;
      }

      return counter == set->state->size;
      }

      void unordered_set_free(unordered_set* set)
      {
      if (!set)
      {
      return;
      }

      unordered_set_clear(set);
      free(set->state->table);
      free(set);
      }

      unordered_set_iterator*
      unordered_set_iterator_alloc(unordered_set* set)
      {
      unordered_set_iterator* iterator;

      if (!set)
      {
      return NULL;
      }

      iterator = malloc(sizeof(*iterator));

      if (!iterator)
      {
      return NULL;
      }

      iterator->set = set;
      iterator->iterated_count = 0;
      iterator->next_entry = set->state->head;
      iterator->expected_mod_count = set->state->mod_count;

      return iterator;
      }

      size_t unordered_set_iterator_has_next(unordered_set_iterator* iterator)
      {
      if (!iterator)
      {
      return 0;
      }

      if (unordered_set_iterator_is_disturbed(iterator))
      {
      return 0;
      }

      return iterator->set->state->size - iterator->iterated_count;
      }

      int unordered_set_iterator_next(unordered_set_iterator* iterator,
      void** key_pointer)
      {
      if (!iterator)
      {
      return false;
      }

      if (!iterator->next_entry)
      {
      return false;
      }

      if (unordered_set_iterator_is_disturbed(iterator))
      {
      return false;
      }

      *key_pointer = iterator->next_entry->key;
      iterator->iterated_count++;
      iterator->next_entry = iterator->next_entry->next;

      return true;
      }

      int unordered_set_iterator_is_disturbed(unordered_set_iterator* iterator)
      {
      if (!iterator)
      {
      false;
      }

      return iterator->expected_mod_count != iterator->set->state->mod_count;
      }

      void unordered_set_iterator_free(unordered_set_iterator* iterator)
      {
      if (!iterator)
      {
      return;
      }

      iterator->set = NULL;
      iterator->next_entry = NULL;
      free(iterator);
      }

      static int int_equals(void* a, void* b)
      {
      int ia = (int)(intptr_t) a;
      int ib = (int)(intptr_t) b;
      return ia == ib;
      }

      static size_t int_hash_function(void* i)
      {
      return (size_t) i;
      }

      static int str_equals(void* a, void* b)
      {
      char* ca = (char*) a;
      char* cb = (char*) b;
      return strcmp(ca, cb) == 0;
      }

      static size_t str_hash_function(void* p)
      {
      size_t sum;
      char* str;
      int i;

      sum = 0;
      str = (char*) p;
      i = 1;

      while (*str)
      {
      sum += *str * i;
      str++;
      }

      return sum;
      }

      static void unordered_set_test_add()
      {
      unordered_set* set = unordered_set_alloc(1,
      0.5f,
      int_hash_function,
      int_equals);
      int i;

      puts(" unordered_set_test_add()");

      for (i = 10; i < 20; i++)
      {
      ASSERT(unordered_set_contains(set, (void*)(intptr_t) i) == FALSE); /*!*/
      ASSERT(unordered_set_add(set, (void*)(intptr_t) i));
      ASSERT(unordered_set_contains(set, (void*)(intptr_t) i));
      ASSERT(unordered_set_is_healthy(set));
      }

      ASSERT(!unordered_set_contains(set, (void*) 9));
      ASSERT( unordered_set_contains(set, (void*) 10));
      ASSERT( unordered_set_contains(set, (void*) 19));
      ASSERT(!unordered_set_contains(set, (void*) 20));

      unordered_set_free(set);

      set = unordered_set_alloc(1,
      0.45,
      str_hash_function,
      str_equals);

      ASSERT(!unordered_set_contains(set, "hello"));
      ASSERT(!unordered_set_contains(set, "world"));
      ASSERT(unordered_set_add(set, "world"));
      ASSERT(unordered_set_add(set, "hello"));
      ASSERT(unordered_set_contains(set, "hello"));
      ASSERT(unordered_set_contains(set, "world"));
      ASSERT(!unordered_set_contains(set, "bye"));

      ASSERT(unordered_set_is_healthy(set));

      ASSERT(unordered_set_remove(set, "hello"));
      ASSERT(!unordered_set_contains(set, "hello"));

      ASSERT(unordered_set_add(set, "repeat"));
      ASSERT(!unordered_set_add(set, "repeat"));
      }

      static void unordered_set_test_contains()
      {
      unordered_set* set = unordered_set_alloc(3,
      0.7f,
      int_hash_function,
      int_equals);
      int i;

      puts(" unordered_set_test_contains()");

      for (i = 0; i < 100; i++)
      {
      ASSERT(unordered_set_add(set, (void*)(intptr_t) i));
      }

      for (i = 99; i >= 0; i--)
      {
      ASSERT(unordered_set_contains(set, (void*)(intptr_t) i));
      }

      for (i = 50; i < 100; i++)
      {
      ASSERT(unordered_set_remove(set, (void*)(intptr_t) i));
      ASSERT(!unordered_set_contains(set, (void*)(intptr_t) i));
      }

      unordered_set_free(set);
      }

      static void unordered_set_test_remove()
      {
      unordered_set* set = unordered_set_alloc(3,
      0.7f,
      int_hash_function,
      int_equals);

      puts("unordered_set_test_remove()");

      ASSERT(unordered_set_add(set, (void*) 1));
      ASSERT(unordered_set_add(set, (void*) 2));
      ASSERT(unordered_set_add(set, (void*) 3));
      ASSERT(3 == unordered_set_size(set));
      ASSERT(!unordered_set_add(set, (void*) 2));
      ASSERT(3 == unordered_set_size(set));

      ASSERT(unordered_set_remove(set, (void*) 2));
      ASSERT(!unordered_set_contains(set, (void*) 2));

      unordered_set_free(set);
      }

      static void unordered_set_test_clear()
      {
      unordered_set* set = unordered_set_alloc(3,
      0.7f,
      int_hash_function,
      int_equals);

      int i;

      puts("unordered_set_test_clear()");

      for (i = 0; i < 100; i++)
      {
      ASSERT((int) unordered_set_size(set) == i);
      unordered_set_add(set, (void*)(intptr_t) i);
      }

      unordered_set_clear(set);

      ASSERT(unordered_set_size(set) == 0);

      for (i = -100; i < 200; i++)
      {
      ASSERT(!unordered_set_contains(set, (void*)(intptr_t) i));
      }

      unordered_set_free(set);
      }

      static void unordered_set_test_iterator()
      {
      unordered_set* set = unordered_set_alloc(
      5,
      0.6f,
      int_hash_function,
      int_equals);

      unordered_set_iterator* iterator;
      int i = 0;
      void* p;

      puts(" unordered_set_test_iterator()");

      for (i = 0; i < 100; i++)
      {
      unordered_set_add(set, (void*)(intptr_t) i);
      }

      iterator = unordered_set_iterator_alloc(set);

      for (i = 0; i < 100; i++)
      {
      ASSERT(unordered_set_iterator_has_next(iterator));
      ASSERT(unordered_set_contains(set, (void*)(intptr_t) i));
      ASSERT(unordered_set_iterator_next(iterator, &p));
      ASSERT(i == (intptr_t) p);
      }

      ASSERT(unordered_set_iterator_has_next(iterator) == FALSE);
      }

      void unordered_set_test()
      {
      puts(" unordered_set_test()");

      unordered_set_test_add();
      unordered_set_test_contains();
      unordered_set_test_remove();
      unordered_set_test_clear();
      unordered_set_test_iterator();
      }


      This software belongs to this repository).










      share|improve this question









      $endgroup$




      In this post, I present a hash table -based set data structure written in C89:



      unordered_set.h



      #ifndef UNORDERED_SET_H
      #define UNORDERED_SET_H

      #include <stdlib.h>
      #include <stdbool.h>

      #ifdef __cplusplus
      extern "C" {
      #endif

      typedef struct unordered_set {
      struct unordered_set_state* state;
      } unordered_set;

      typedef struct unordered_set_iterator unordered_set_iterator;

      /***************************************************************************
      * Allocates a new, empty set with given hash function and given equality *
      * testing function. *
      ***************************************************************************/
      unordered_set* unordered_set_alloc(size_t initial_capacity,
      float load_factor,
      size_t(*p_hash_function)(void*),
      int (*p_equals_function)(void*, void*));

      /***************************************************************************
      * Adds 'p_element' to the set if not already there. Returns true if the *
      * structure of the set changed. *
      ***************************************************************************/
      int unordered_set_add(unordered_set* p_set, void* p_element);

      /***************************************************************************
      * Returns true if the set contains the element. *
      ***************************************************************************/
      int unordered_set_contains(unordered_set* p_set, void* p_element);

      /***************************************************************************
      * If the element is in the set, removes it and returns true. *
      ***************************************************************************/
      int unordered_set_remove(unordered_set* p_set, void* p_element);

      /***************************************************************************
      * Removes all the contents of the set. *
      ***************************************************************************/
      void unordered_set_clear(unordered_set* p_set);

      /***************************************************************************
      * Returns the size of the set. *
      ***************************************************************************/
      size_t unordered_set_size(unordered_set* p_set);

      /***************************************************************************
      * Checks that the set is in valid state. *
      ***************************************************************************/
      int unordered_set_is_healthy(unordered_set* p_set);

      /***************************************************************************
      * Deallocates the entire set. Only the set and its nodes are deallocated. *
      * The user is responsible for deallocating the actual data stored in the *
      * set. *
      ***************************************************************************/
      void unordered_set_free(unordered_set* p_set);

      /***************************************************************************
      * Returns the iterator over the set. The nodes are iterated in insertion *
      * order. *
      ***************************************************************************/
      unordered_set_iterator* unordered_set_iterator_alloc(unordered_set* p_set);

      /***************************************************************************
      * Returns the number of elements not yet iterated over. *
      ***************************************************************************/
      size_t unordered_set_iterator_has_next(unordered_set_iterator* p_iterator);

      /***************************************************************************
      * Loads the next element in the iteration order. Returns true if advanced *
      * to the next element. *
      ***************************************************************************/
      int unordered_set_iterator_next(unordered_set_iterator* p_iterator,
      void** pp_element);

      /***************************************************************************
      * Returns true if the set was modified during the iteration. *
      ***************************************************************************/
      int unordered_set_iterator_is_disturbed(unordered_set_iterator* p_iterator);

      /***************************************************************************
      * Deallocates the set iterator. *
      ***************************************************************************/
      void unordered_set_iterator_free(unordered_set_iterator* p_iterator);

      /* Contains the unit tests. */
      void unordered_set_test();

      #ifdef __cplusplus
      }
      #endif

      #endif /* UNORDERED_SET_H */


      unordered_set.c



      #include "my_assert.h"
      #include "unordered_set.h"
      #include <stdint.h>
      #include <stdlib.h>
      #include <string.h>

      #define FALSE 0
      #define TRUE 1

      typedef struct unordered_set_entry {
      void* key;
      struct unordered_set_entry* chain_next;
      struct unordered_set_entry* prev;
      struct unordered_set_entry* next;
      } unordered_set_entry;

      typedef struct unordered_set_state {
      unordered_set_entry** table;
      unordered_set_entry* head;
      unordered_set_entry* tail;
      size_t (*hash_function)(void*);
      int (*equals_function) (void*, void*);
      size_t mod_count;
      size_t table_capacity;
      size_t size;
      size_t mask;
      size_t max_allowed_size;
      float load_factor;
      } unordered_set_state;

      struct unordered_set_iterator {
      unordered_set* set;
      unordered_set_entry* next_entry;
      size_t iterated_count;
      size_t expected_mod_count;
      };

      static unordered_set_entry* unordered_set_entry_alloc(void* key)
      {
      unordered_set_entry* entry = malloc(sizeof(*entry));

      if (!entry)
      {
      return NULL;
      }

      entry->key = key;
      entry->chain_next = NULL;
      entry->next = NULL;
      entry->prev = NULL;

      return entry;
      }

      static const float MINIMUM_LOAD_FACTOR = 0.2f;
      static const int MINIMUM_INITIAL_CAPACITY = 16;

      static float maxf(float a, float b)
      {
      return a < b ? b : a;
      }

      static int maxi(int a, int b)
      {
      return a < b ? b : a;
      }

      /*******************************************************************************
      * Makes sure that the load factor is no less than a minimum threshold. *
      *******************************************************************************/
      static float fix_load_factor(float load_factor)
      {
      return maxf(load_factor, MINIMUM_LOAD_FACTOR);
      }

      /*******************************************************************************
      * Makes sure that the initial capacity is no less than a minimum allowed and *
      * is a power of two. *
      *******************************************************************************/
      static size_t fix_initial_capacity(size_t initial_capacity)
      {
      size_t ret;

      initial_capacity = maxi(initial_capacity, MINIMUM_INITIAL_CAPACITY);
      ret = 1;

      while (ret < initial_capacity)
      {
      ret <<= 1;
      }

      return ret;
      }

      unordered_set* unordered_set_alloc(size_t initial_capacity,
      float load_factor,
      size_t(*hash_function)(void*),
      int (*equals_function)(void*, void*))
      {
      unordered_set* set;

      if (!hash_function || !equals_function)
      {
      return NULL;
      }

      set = malloc(sizeof(*set));

      if (!set)
      {
      return NULL;
      }

      set->state = malloc(sizeof(*set->state));
      load_factor = fix_load_factor(load_factor);
      initial_capacity = fix_initial_capacity(initial_capacity);

      set->state->load_factor = load_factor;
      set->state->table_capacity = initial_capacity;
      set->state->size = 0;
      set->state->mod_count = 0;
      set->state->head = NULL;
      set->state->tail = NULL;
      set->state->table = calloc(initial_capacity,
      sizeof(unordered_set_entry*));
      set->state->hash_function = hash_function;
      set->state->equals_function = equals_function;
      set->state->mask = initial_capacity - 1;
      set->state->max_allowed_size = (size_t)(initial_capacity * load_factor);

      return set;
      }

      static void ensure_capacity(unordered_set* set)
      {
      size_t new_capacity;
      size_t new_mask;
      size_t index;
      unordered_set_entry* entry;
      unordered_set_entry** new_table;

      if (set->state->size < set->state->max_allowed_size)
      {
      return;
      }

      new_capacity = 2 * set->state->table_capacity;
      new_mask = new_capacity - 1;
      new_table = calloc(new_capacity, sizeof(unordered_set_entry*));

      if (!new_table)
      {
      return;
      }

      /* Rehash the entries. */
      for (entry = set->state->head; entry; entry = entry->next)
      {
      index = set->state->hash_function(entry->key) & new_mask;
      entry->chain_next = new_table[index];
      new_table[index] = entry;
      }

      free(set->state->table);

      set->state->table = new_table;
      set->state->table_capacity = new_capacity;
      set->state->mask = new_mask;
      set->state->max_allowed_size = (size_t)(new_capacity * set->state->load_factor);
      }

      int unordered_set_add(unordered_set* set, void* key)
      {
      size_t index;
      size_t hash_value;
      unordered_set_entry* entry;

      if (!set)
      {
      return FALSE;
      }

      hash_value = set->state->hash_function(key);
      index = hash_value & set->state->mask;

      for (entry = set->state->table[index]; entry; entry = entry->chain_next)
      {
      if (set->state->equals_function(entry->key, key))
      {
      return false;
      }
      }

      ensure_capacity(set);

      /* Recompute the index since it is possibly changed by 'ensure_capacity' */
      index = hash_value & set->state->mask;
      entry = unordered_set_entry_alloc(key);
      entry->chain_next = set->state->table[index];
      set->state->table[index] = entry;

      /* Link the new entry to the tail of the list. */
      if (!set->state->tail)
      {
      set->state->head = entry;
      set->state->tail = entry;
      }
      else
      {
      set->state->tail->next = entry;
      entry->prev = set->state->tail;
      set->state->tail = entry;
      }

      set->state->size++;
      set->state->mod_count++;

      return true;
      }

      int unordered_set_contains(unordered_set* set, void* key)
      {
      size_t index;
      unordered_set_entry* p_entry;

      if (!set)
      {
      return false;
      }

      index = set->state->hash_function(key) & set->state->mask;

      for (p_entry = set->state->table[index]; p_entry; p_entry = p_entry->chain_next)
      {
      if (set->state->equals_function(key, p_entry->key))
      {
      return true;
      }
      }

      return false;
      }

      int unordered_set_remove(unordered_set* set, void* key)
      {
      size_t index;
      unordered_set_entry* prev_entry;
      unordered_set_entry* current_entry;

      if (!set)
      {
      return false;
      }

      index = set->state->hash_function(key) & set->state->mask;

      prev_entry = NULL;

      for (current_entry = set->state->table[index];
      current_entry;
      current_entry = current_entry->chain_next)
      {
      if (set->state->equals_function(key, current_entry->key))
      {
      if (prev_entry)
      {
      /* Omit the 'p_current_entry' in the collision chain. */
      prev_entry->chain_next = current_entry->chain_next;
      }
      else
      {
      set->state->table[index] = current_entry->chain_next;
      }

      /* Unlink from the global iteration chain. */
      if (current_entry->prev)
      {
      current_entry->prev->next = current_entry->next;
      }
      else
      {
      set->state->head = current_entry->next;
      }

      if (current_entry->next)
      {
      current_entry->next->prev = current_entry->prev;
      }
      else
      {
      set->state->tail = current_entry->prev;
      }

      set->state->size--;
      set->state->mod_count++;
      free(current_entry);
      return true;
      }

      prev_entry = current_entry;
      }

      return false;
      }

      void unordered_set_clear(unordered_set* set)
      {
      unordered_set_entry* entry;
      unordered_set_entry* next_entry;
      size_t index;

      if (!set)
      {
      return;
      }

      entry = set->state->head;

      while (entry)
      {
      index = set->state->hash_function(entry->key) & set->state->mask;
      next_entry = entry->next;
      free(entry);
      entry = next_entry;
      set->state->table[index] = NULL;
      }

      set->state->mod_count += set->state->size;
      set->state->size = 0;
      set->state->head = NULL;
      set->state->tail = NULL;
      }

      size_t unordered_set_size(unordered_set* set)
      {
      return set ? set->state->size : 0;
      }

      int unordered_set_is_healthy(unordered_set* set)
      {
      size_t counter;
      unordered_set_entry* entry;

      if (!set)
      {
      return false;
      }

      counter = 0;
      entry = set->state->head;

      if (entry && entry->prev)
      {
      return false;
      }

      for (; entry; entry = entry->next)
      {
      counter++;
      }

      return counter == set->state->size;
      }

      void unordered_set_free(unordered_set* set)
      {
      if (!set)
      {
      return;
      }

      unordered_set_clear(set);
      free(set->state->table);
      free(set);
      }

      unordered_set_iterator*
      unordered_set_iterator_alloc(unordered_set* set)
      {
      unordered_set_iterator* iterator;

      if (!set)
      {
      return NULL;
      }

      iterator = malloc(sizeof(*iterator));

      if (!iterator)
      {
      return NULL;
      }

      iterator->set = set;
      iterator->iterated_count = 0;
      iterator->next_entry = set->state->head;
      iterator->expected_mod_count = set->state->mod_count;

      return iterator;
      }

      size_t unordered_set_iterator_has_next(unordered_set_iterator* iterator)
      {
      if (!iterator)
      {
      return 0;
      }

      if (unordered_set_iterator_is_disturbed(iterator))
      {
      return 0;
      }

      return iterator->set->state->size - iterator->iterated_count;
      }

      int unordered_set_iterator_next(unordered_set_iterator* iterator,
      void** key_pointer)
      {
      if (!iterator)
      {
      return false;
      }

      if (!iterator->next_entry)
      {
      return false;
      }

      if (unordered_set_iterator_is_disturbed(iterator))
      {
      return false;
      }

      *key_pointer = iterator->next_entry->key;
      iterator->iterated_count++;
      iterator->next_entry = iterator->next_entry->next;

      return true;
      }

      int unordered_set_iterator_is_disturbed(unordered_set_iterator* iterator)
      {
      if (!iterator)
      {
      false;
      }

      return iterator->expected_mod_count != iterator->set->state->mod_count;
      }

      void unordered_set_iterator_free(unordered_set_iterator* iterator)
      {
      if (!iterator)
      {
      return;
      }

      iterator->set = NULL;
      iterator->next_entry = NULL;
      free(iterator);
      }

      static int int_equals(void* a, void* b)
      {
      int ia = (int)(intptr_t) a;
      int ib = (int)(intptr_t) b;
      return ia == ib;
      }

      static size_t int_hash_function(void* i)
      {
      return (size_t) i;
      }

      static int str_equals(void* a, void* b)
      {
      char* ca = (char*) a;
      char* cb = (char*) b;
      return strcmp(ca, cb) == 0;
      }

      static size_t str_hash_function(void* p)
      {
      size_t sum;
      char* str;
      int i;

      sum = 0;
      str = (char*) p;
      i = 1;

      while (*str)
      {
      sum += *str * i;
      str++;
      }

      return sum;
      }

      static void unordered_set_test_add()
      {
      unordered_set* set = unordered_set_alloc(1,
      0.5f,
      int_hash_function,
      int_equals);
      int i;

      puts(" unordered_set_test_add()");

      for (i = 10; i < 20; i++)
      {
      ASSERT(unordered_set_contains(set, (void*)(intptr_t) i) == FALSE); /*!*/
      ASSERT(unordered_set_add(set, (void*)(intptr_t) i));
      ASSERT(unordered_set_contains(set, (void*)(intptr_t) i));
      ASSERT(unordered_set_is_healthy(set));
      }

      ASSERT(!unordered_set_contains(set, (void*) 9));
      ASSERT( unordered_set_contains(set, (void*) 10));
      ASSERT( unordered_set_contains(set, (void*) 19));
      ASSERT(!unordered_set_contains(set, (void*) 20));

      unordered_set_free(set);

      set = unordered_set_alloc(1,
      0.45,
      str_hash_function,
      str_equals);

      ASSERT(!unordered_set_contains(set, "hello"));
      ASSERT(!unordered_set_contains(set, "world"));
      ASSERT(unordered_set_add(set, "world"));
      ASSERT(unordered_set_add(set, "hello"));
      ASSERT(unordered_set_contains(set, "hello"));
      ASSERT(unordered_set_contains(set, "world"));
      ASSERT(!unordered_set_contains(set, "bye"));

      ASSERT(unordered_set_is_healthy(set));

      ASSERT(unordered_set_remove(set, "hello"));
      ASSERT(!unordered_set_contains(set, "hello"));

      ASSERT(unordered_set_add(set, "repeat"));
      ASSERT(!unordered_set_add(set, "repeat"));
      }

      static void unordered_set_test_contains()
      {
      unordered_set* set = unordered_set_alloc(3,
      0.7f,
      int_hash_function,
      int_equals);
      int i;

      puts(" unordered_set_test_contains()");

      for (i = 0; i < 100; i++)
      {
      ASSERT(unordered_set_add(set, (void*)(intptr_t) i));
      }

      for (i = 99; i >= 0; i--)
      {
      ASSERT(unordered_set_contains(set, (void*)(intptr_t) i));
      }

      for (i = 50; i < 100; i++)
      {
      ASSERT(unordered_set_remove(set, (void*)(intptr_t) i));
      ASSERT(!unordered_set_contains(set, (void*)(intptr_t) i));
      }

      unordered_set_free(set);
      }

      static void unordered_set_test_remove()
      {
      unordered_set* set = unordered_set_alloc(3,
      0.7f,
      int_hash_function,
      int_equals);

      puts("unordered_set_test_remove()");

      ASSERT(unordered_set_add(set, (void*) 1));
      ASSERT(unordered_set_add(set, (void*) 2));
      ASSERT(unordered_set_add(set, (void*) 3));
      ASSERT(3 == unordered_set_size(set));
      ASSERT(!unordered_set_add(set, (void*) 2));
      ASSERT(3 == unordered_set_size(set));

      ASSERT(unordered_set_remove(set, (void*) 2));
      ASSERT(!unordered_set_contains(set, (void*) 2));

      unordered_set_free(set);
      }

      static void unordered_set_test_clear()
      {
      unordered_set* set = unordered_set_alloc(3,
      0.7f,
      int_hash_function,
      int_equals);

      int i;

      puts("unordered_set_test_clear()");

      for (i = 0; i < 100; i++)
      {
      ASSERT((int) unordered_set_size(set) == i);
      unordered_set_add(set, (void*)(intptr_t) i);
      }

      unordered_set_clear(set);

      ASSERT(unordered_set_size(set) == 0);

      for (i = -100; i < 200; i++)
      {
      ASSERT(!unordered_set_contains(set, (void*)(intptr_t) i));
      }

      unordered_set_free(set);
      }

      static void unordered_set_test_iterator()
      {
      unordered_set* set = unordered_set_alloc(
      5,
      0.6f,
      int_hash_function,
      int_equals);

      unordered_set_iterator* iterator;
      int i = 0;
      void* p;

      puts(" unordered_set_test_iterator()");

      for (i = 0; i < 100; i++)
      {
      unordered_set_add(set, (void*)(intptr_t) i);
      }

      iterator = unordered_set_iterator_alloc(set);

      for (i = 0; i < 100; i++)
      {
      ASSERT(unordered_set_iterator_has_next(iterator));
      ASSERT(unordered_set_contains(set, (void*)(intptr_t) i));
      ASSERT(unordered_set_iterator_next(iterator, &p));
      ASSERT(i == (intptr_t) p);
      }

      ASSERT(unordered_set_iterator_has_next(iterator) == FALSE);
      }

      void unordered_set_test()
      {
      puts(" unordered_set_test()");

      unordered_set_test_add();
      unordered_set_test_contains();
      unordered_set_test_remove();
      unordered_set_test_clear();
      unordered_set_test_iterator();
      }


      This software belongs to this repository).







      c hash-table set c89






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked 11 mins ago









      coderoddecoderodde

      15.9k639129




      15.9k639129






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "196"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f216211%2funordered-set-a-hash-table-based-set-data-structure-in-c89%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Code Review Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f216211%2funordered-set-a-hash-table-based-set-data-structure-in-c89%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Список кардиналов, возведённых папой римским Каликстом III

          Deduzione

          Mysql.sock missing - “Can't connect to local MySQL server through socket”